对于存在预紧力和腐蚀缺陷的金属管道,在缺陷处经常发生局部弹塑性形变,并影响金属管道的腐蚀电场特性。以存在椭球形腐蚀缺陷的20#钢金属管道为研究对象,建立了金属管道弹塑性应力应变与局部电化学腐蚀的力学-电化学耦合模型,研究了不同拉伸位移对金属管道应力分布和腐蚀电场特性的影响。结果表明,不同拉伸位移下,Mises应力、腐蚀电位、腐蚀电流密度和腐蚀电场模值大小均相对缺陷中心对称分布,最大值均出现在腐蚀缺陷中心处,且数值均随着拉伸位移增大而增大。塑性变形阶段对缺陷局部电化学特性的影响显著大于弹性变形阶段。腐蚀缺陷处的腐蚀由一系列微小原电池组成,拉伸位移增大将加快缺陷处腐蚀速度。
For metal pipe with pretension and corrosion defects, local elastic-plastic deformation often occurs at the defects and affects the corrosion electric field characteristics of the metal pipe. This paper takes 20# steel metal pipe with ellipsoidal corrosion defect as the research object, and establishes a mechanical-electrochemical coupling model of elastic-plastic stressstrain and local electrochemical corrosion to study the effects of different tensile displacements on stress distribution and corrosion electric field characteristics of metal pipes. The results show that mises stress, corrosion potential, corrosion current density and corrosion electric field mode are symmetrically distributed with respect to the defect center under different tensile displacements, with the maximum value occurring at the defect center, and the values all increase with the increase of tensile displacement. The influence of plastic deformation stage on the local electrochemical characteristics of defects is significantly greater than that of elastic deformation stage. The corrosion at the defect is composed of a series of small galvanic cells, and the increase of tensile displacement can accelerate the corrosion rate at the defect.
[1] 张尧,王建刚. 304不锈钢应力腐蚀行为研究[J].当代化工研究, 2022(16):127-129.
[2] 招晶鑫,淡振华,孙中刚,等.增材制造316L不锈钢应力腐蚀研究进展[J].材料工程, 2023, 51(5):1-13.
[3] Wan H X, Du C W, Liu Z Y, et al. The effect of hydro-gen on stress corrosion behavior of X65 steel welded joint in simulated deep sea environment[J]. Ocean Engineering, 2016, 114:216-223.
[4] King F, Burt D, Ganeshalingam J, et al. Coupled analysis of mechanical-and corrosion-related degradation of car-bon steel spent fuel container[J]. Corrosion Engineering, Science and Technology, 2014, 49(6):442-449.
[5] Ranade S, Forsyth M, Tan M Y J. In situ measurement of pipeline coating integrity and corrosion resistance losses under simulated mechanical strains and cathodic protec-tion[J]. Progress in Organic Coatings, 2016, 101:111-121.
[6] 周利剑,曹武朋,卢召红,等.腐蚀长度、宽度、深度对带大面积腐蚀缺陷管道应力的影响分析[J].材料保护, 2021, 54(3):153-157.
[7] 徐庆林,王向军,童余德,等.腐蚀电场的力学化学耦合模型[J].哈尔滨工业大学学报, 2021, 53(3):186-192.
[8] 杨宏启,张崎,李一民,等.弹性应力对碳钢在海水环境中腐蚀速率的影响[J].华中科技大学学报(自然科学版), 2016, 44(10):16-21.
[9] 王莹,杨胜利,刘晓勇.钛合金慢应变速率拉伸应力腐蚀行为研究[J].材料开发与应用, 2022, 37(4):15-20.
[10] 张凌云,杨镇,石绍秋,等.航空导管应力腐蚀实验研究[J].热加工工艺, 2022, 51(20):62-65.