专题:海洋工程装备智能化

基于虚拟激励法的隔震LNG储罐随机地震响应分析

  • 刘富鹏 ,
  • 叶忠志 ,
  • 孙晓旭 ,
  • 秦玉良 ,
  • 王立佳 ,
  • 余建星 ,
  • 王晓虎 ,
  • 雷鸣 ,
  • 李浩然
展开
  • 1. 天津大学水利工程智能建设与运维全国重点实验室, 天津 300072;
    2. 海洋石油工程股份有限公司, 天津 300461;
    3. 大连理工大学工业装备结构分析优化与 CAE 软件全国重点实验室, 大连 116024
刘富鹏,博士研究生,研究方向为LNG储罐结构优化,电子信箱:liufp6@cooec.com.cn;余建星(通信作者),教授,研究方向为风险评估与控制,电子信箱:yjx2000@tju.edu.cn

收稿日期: 2023-09-07

  修回日期: 2024-03-22

  网络出版日期: 2024-08-01

Random seismic response analysis of LNG storage tanks based on pseudo excitation method

  • LIU Fupeng ,
  • YE Zhongzhi ,
  • SUN Xiaoxu ,
  • QIN Yuliang ,
  • WANG Lijia ,
  • YU Jianxing ,
  • WANG Xiaohu ,
  • LEI Ming ,
  • LI Haoran
Expand
  • 1. State Key Laboratory of Hydraulic Engineering Intelligent Construction and Operation, Tianjin University, Tianjin 300072, China;
    2. Offshore Oil Engineering Co., Ltd., Tianjin 300461, China;
    3. State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Dalian University of Technology, Dalian 116024, China

Received date: 2023-09-07

  Revised date: 2024-03-22

  Online published: 2024-08-01

摘要

基于等效线性化法和虚拟激励法,对地震激励下的圆柱形LNG(液化天然气)隔震储罐进行了随机振动分析,研究了隔震储罐的液位与形状对随机地震响应的影响。首先,基于加速度反应谱,根据Kaul方法得到了地震动功率谱密度函数,并建立了LNG储罐的HarounHousner模型。其次,根据等效线性化方法得到了隔震系统的等效刚度和等效阻尼,建立了等效线性系统的频域运动方程,并应用虚拟激励法进行求解。最后,在数值算例中,计算了不同液位与半径下隔震储罐的随机响应,研究了储罐半径和液位高度对响应的影响,为隔震储罐的优化设计提供一定的参考。

本文引用格式

刘富鹏 , 叶忠志 , 孙晓旭 , 秦玉良 , 王立佳 , 余建星 , 王晓虎 , 雷鸣 , 李浩然 . 基于虚拟激励法的隔震LNG储罐随机地震响应分析[J]. 科技导报, 2024 , 42(13) : 54 -61 . DOI: 10.3981/j.issn.1000-7857.2023.09.01366

Abstract

This paper bases on the equivalent linearization method and pseudo excitation method to conduct random vibration analysis of cylindrical LNG isolation tanks under seismic excitation and investigates the influence of the liquid level and shape of the isolation tanks on the random seismic response. First, based on the acceleration response spectrum, a seismic power spectral density function is obtained according to the Kaul method, and a Haroun-Housner model of the LNG tank is established. Second, the equivalent stiffness and damping of the isolation system are obtained according to the equivalent linearization method, and the frequency domain equations of motion of the equivalent linear system are established, and a pseudo excitation method is developed to solve them iteratively. Finally, numerical examples are given, where the random responses of isolated storage tanks under different liquid levels and radii are calculated and the effects of tank radius and liquid level height on the response are studied, so as to provide certain reference for the optimization design of isolated storage tanks.

参考文献

[1] 盛锋,黄磊.储罐等效力学简化模型的研究[J].核动力工程, 2017, 38(3):85-89.
[2] 秦玉良. LNG储罐建设隔震垫安装优化[J].化工管理, 2023(13):105-107.
[3] Jadhav M B, Jangid R S. Response of base-isolated liq-uid storage tanks[J]. Shock and Vibration, 2004, 11(1):33-45.
[4] Kelly J M. Aseismic base isolation:Review and bibliogra-phy[J]. Soil Dynamics and Earthquake Engineering, 1986, 5(4):202-216.
[5] Jangid R S, Datta T K. Seismic behaviour of base-isolat-ed buildings:A state-of-the-art review[J]. Proceedings of the Institution of Civil Engineers-Structures and Build-ings, 1995, 110(2):186-203.
[6] Housner G W. The dynamic behavior of water tanks[J]. Bulletin of the Seismological Society of America, 1963, 53(2):381-387.
[7] Haroun M A. Vibration studies and tests of liquid storage tanks[J]. Earthquake Engineering&Structural Dynamics, 1983, 11(2):179-206.
[8] Curadelli O. Equivalent linear stochastic seismic analysis of cylindrical base-isolated liquid storage tanks[J]. Jour-nal of Constructional Steel Research, 2013, 83:166-176.
[9] Safari S, Tarinejad R. Parametric study of stochastic seis-mic responses of base-isolated liquid storage tanks under near-fault and far-fault ground motions[J]. Journal of Vi-bration and Control, 2018, 24(24):5747-5764.
[10] Xu Y L, Sun D K, Ko J M, et al. Buffeting analysis of long span bridges:A new algorithm[J]. Computers&Structures, 1998, 68(4):303-313.
[11] 林家浩,孙东科.虚拟激励法在香港青马悬索桥抖振分析中的应用(英)[J].大连理工大学学报, 1999, 39(2):172-179.
[12] 林家浩,张亚辉.随机振动的虚拟激励法[M].北京:科学出版社, 2004.
[13] Kim N S, Lee D G. Pseudodynamic test for evaluation of seismic performance of base-isolated liquid storage tanks[J]. Engineering Structures, 1995, 17(3):198-208.
[14] Wen Y K. Method for random vibration of hysteretic sys-tems[J]. Journal of the Engineering Mechanics Division, 1976, 102(2):249-263.
[15] Caughey T K. Random excitation of a system with bilin-ear hysteresis[J]. Journal of Applied Mechanics, 1960, 27(4):649-652.
[16] Lin J H, Zhang W S, Li J J. Structural responses to arbi-trarily coherent stationary random excitations[J]. Comput-ers&Structures, 1994, 50(5):629-633.
[17] Lin J H, Li J J, Zhang W S, et al. Random seismic re-sponses of multi-support structures in evolutionary inho-mogeneous random fields[J]. Earthquake Engineering&Structural Dynamics, 1997, 26(1):135-145.
[18] Lin J H, Sun D K, Sun Y, et al. Structural responses to non-uniformly modulated evolutionary random seismic excitations[J]. Communications in Numerical Methods in Engineering, 1997, 13(8):605-616.
[19] Roberts J B, Spanos P D. Random vibration and statisti-cal linearization[M]. Chelmsford:Courier Corporation, 2003.
[20] 林家浩,张亚辉,赵岩.大跨度结构抗震分析方法及近期进展[J].力学进展, 2001, 31(3):350-360.
[21] Kaul M K. Stochastic characterization of earthquakes through their response spectrum[J]. Earthquake Engi-neering&Structural Dynamics, 1978, 6(5):497-509.
文章导航

/