专题:海洋工程装备智能化

LNG耐超低温柔性管道实验测试研究进展

  • 英玺蓬 ,
  • 阎军 ,
  • 张凯仑 ,
  • 曹慧鑫 ,
  • 步宇峰 ,
  • 卢青针 ,
  • 杨志勋
展开
  • 1. 大连理工大学工业装备结构分析国家重点实验室 工程力学系, 大连 116024;
    2. 大连理工大学宁波研究院, 宁波 315016;
    3. 哈尔滨工程大学机电工程学院, 哈尔滨 150001
英玺蓬,博士研究生,研究方向为海洋柔性管缆的多尺度结构分析和优化设计,电子信箱:15952003951@163.com;杨志勋(通信作者),教授,研究方向为海洋柔性管缆的优化设计和工程应用,电子信箱:yangzhixun@hrbeu.edu.cn

收稿日期: 2023-09-07

  修回日期: 2023-11-19

  网络出版日期: 2024-08-01

基金资助

国家自然科学基金项目(U1906233);大连市支持高层次人才创新创业项目(2021RD16);辽宁省兴辽英才计划项目(XLYC2002108);中央高校基本科研业务费专项资金项目(DUT20ZD213,DUT22ZD209,3072022QBZ0703);黑龙江省自然科学基金项目(LH2021E050);工业装备结构分析国家重点实验室开发基金项目(GZ20105);海洋工程国家重点实验室开放课题(GKZD010084)

Review of experimental testing technology of LNG cryogenic flexible hoses

  • YING Xipeng ,
  • YAN Jun ,
  • ZHANG Kailun ,
  • CAO Huixin ,
  • BU Yufeng ,
  • LU Qingzhen ,
  • YANG Zhixun
Expand
  • 1. State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China;
    2. Ningbo Research Institute of Dalian University of Technology, Ningbo 315016, China;
    3. College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001, China

Received date: 2023-09-07

  Revised date: 2023-11-19

  Online published: 2024-08-01

摘要

耐超低温柔性管道是开采、运输、存储液化天然气(LNG)过程中的核心装备之一。分析了国内外LNG耐超低温柔性管道实验测试的研究现状。总结了现有行业标准规范要求的LNG耐超低温柔性管道实验测试项目,根据不同的实验类型对测试项目进行了梳理与分类;综述了LNG耐超低温柔性管道实验测试方面的研究进展,并盘点了不同实验类型的目的与意义;展望了LNG耐超低温柔性管道未来发展的主要研究方向。

本文引用格式

英玺蓬 , 阎军 , 张凯仑 , 曹慧鑫 , 步宇峰 , 卢青针 , 杨志勋 . LNG耐超低温柔性管道实验测试研究进展[J]. 科技导报, 2024 , 42(13) : 73 -85 . DOI: 10.3981/j.issn.1000-7857.2023.09.01368

Abstract

LNG cryogenic flexible hose is one of the key devices in exploitation, transportation and storage of LNG (liquefied natural gas), which is called as the "blood vessel" of LNG transportation system. With the exploitation and transportation of LNG gradually from offshore to deep sea in recent years, there is a broader development prospect for LNG cryogenic flexible hose and its application technology. In order to verify the design theory and safety of engineering application of LNG cryogenic flexible hose, experimental testing technology has become an indispensable analytical means to study the mechanical properties of the hose. This paper focuses on the research of experimental test of LNG cryogenic flexible hose and investigates related technologies. Then both domestic and abroad research progress of experimental testing technology of LNG cryogenic flexible hose is summarized and the future research hotspots of experimental testing technology are prospected. Since China started related research of LNG cryogenic flexible hose relatively late it is of great significance to break through key technologies of LNG cryogenic flexible hose and to realize the domestic manufacturing process.

参考文献

[1] 李景明,魏国齐,赵群.中国大气田勘探方向[J].天然气工业, 2008, 28(1):13-16.
[2] 郑志炜,吴长春.输气管道系统供气调峰技术进展[J].科技导报, 2011, 29(12):75-79.
[3] 童晓光,李浩武,张映红,等.引进海外天然气资源存在的问题及应对措施[J].天然气工业, 2008, 28(6):13-19.
[4] 孙珀,黄平.液化天然气泄漏扩散数学模型分析[J].科技导报, 2008, 26(10):83-86.
[5] 刘合,梁坤,张国生,等.碳达峰、碳中和约束下我国天然气发展策略研究[J].中国工程科学, 2021, 23(6):33-42.
[6] 杨亮,刘淼儿,范嘉堃,等. LNG耐超低温柔性管道研究进展综述:工业应用与结构设计分析[J].力学学报, 2022, 54(10):2904-2921.
[7] Bardi F C, Tang H, Kulkarni M, et al. Structural analysis of cryogenic flexible hose[C]//Proceedings of ASME 201130th International Conference on Ocean, Offshore and Arctic Engineering. Rotterdam:ASME, 2011:593-606.
[8] EN 1474-2. Installation and equipment for liquefied natu-ral gas-design and testing of marine transfer systemsPart 2:Design and testing of transfer hoses[S]. Geneva:Comitee Europeen de Normalisation, 2020.
[9] 谢彬,喻西崇,韩旭亮,等. FLNG研究现状及在中国南海深远海气田开发中的应用前景[J].中国海上油气, 2017, 29(2):127-134.
[10] 谢彬,赵晶瑞,喻西崇. FLNG外输系统在中国南海的适用性分析及国产化研究思考[J].中国海上油气, 2020, 32(5):152-158.
[11] 阎军,胡海涛,尹原超,等.海洋柔性管缆结构的试验测试技术[J].海洋工程装备与技术, 2019, 6(6):750-757.
[12] 阎军,胡海涛,苏琦,等.海洋电缆中关键力学问题的研究进展与展望[J].力学学报, 2022, 54(4):846-861.
[13] Russ G, Beer H. Heat transfer and flow field in a pipe with sinusoidal wavy surface-II. Experimental investiga-tion[J]. International Journal of Heat and Mass Transfer, 1997, 40(5):1071-1081.
[14] 张进,安晨,高强,等.海洋LNG低温软管结构设计与试验研究现状[J].海洋工程装备与技术, 2020, 7(5):300-310.
[15] Queau J P F, Torre G E. COOLTM hose qualification pro-cess of the first EN1474-2 LNG floating hose[C]//Pro-ceedings of ASME 201130th International Conference on Ocean, Offshore and Arctic Engineering. Rotterdam:ASEME, 2011:479-486.
[16] Pagar N D, Gawande S H. Experimental Investigations on Meridional and Circumferential Stresses of Bellows due to Internal Pressure[C]//ASME 2019 Gas Turbine India Conference. Chennai:ASME, 2019, 83525:V001T05A020.
[17] Frohne C, Harten F, Schippl K, et al. Innovative pipe system for offshore LNG transfer[C]//Proceedings of Off-shore Technology Conference. Houston:Society of Petro-leum Engineers, 2008:19239.
[18] EN 1474-1. Installation and equipment for liquefied nat-ural gas-design and testing of marine transfer systemsPart 1:Design and testing of transfer arms[S]. Geneva:Comitee Europeen de Normalisation, 2020.
[19] EN 1474-3. Installation and equipment for liquefied nat-ural gas-design and testing of marine transfer systems Part 3:Offshore transfer systems[S]. Geneva:Comitee Europeen de Normalisation, 2020.
[20] Thermoplastic multi-layer (non-vulcanized) hoses and hose assemblies for the transfer of liquid petroleum gas and liquefied natural gas-Specification:DS/EN 13766:2010[S]. Geneva:Danish Standards, 2010.
[21] IGC Code. International Code for the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk (Second Edition)[S]. London:International Maritime Or-ganization, 2016.
[22] Giacosa A, Mauries B, Lagarrigue V. Joining forces to unlock LNG tandem offloading using 20″ LNG floating hoses:An example of industrial collaboration[C]//Pro-ceedings of Day 2 Tue, May 03, 2016. Houston:OTC, 2016:OTC-27132-MS.
[23] van der Weijde G, Mallon N. Qualification of multi-com-posite hoses for STS LNG transfer[C]//Proceedings of ASME 201130th International Conference on Ocean, Offshore and Arctic Engineering. Rotterdam:ASME, 2011:209-215.
[24] Gerard W, Sjoerd P. Assessing integrity and reliability of multicomposite LNG transfer hoses[C]//Offshore Tech-nology Conference. Houston:OnePetro, 2012:OTC-23321-MS.
[25] Stone J B, Ehrhardt M E, Johnston A B, et al. Offshore LNG loading problem solved[EB/OL].[2023-03-05]. https://www.impac.de/fileadmin/content/Downloads/15_Offshore_LNG_gastech_2003.pdf.
[26] Lagarrigue V, Hermary J, Mauries B. Qualification of a cryogenic floating flexible hose enabling safe and reli-able offshore LNG transfer for tandem FLNG offloading systems[C]//Proceedings of Day 4 Thu, May 08, 2014. Houston:OTC, 2014:OTC-25413-MS.
[27] Jorgen E, Svein I E, Arild S, et al. A new solution for tandem offloading of LNG[C]//Offshore Technology Con-ference. Houston:OnePetro, 2002.
[28] Cox P, Gérez J, Biaggi J. Cryogenic flexible for offshore LNG transfer[C]//Proceedings of Day 2 Sat, May 03, 2003. Houston:OTC, 2003:15400.
[29] EJMA. Standards of the Expansion Joint Manufactures Association[S]. London:Expansion Joint Manufacturers Association, 2015.
[30] Eide J, Haakonsen R, Oya T V, et al. Offshore tandem loading of LNG-from idea to system approval[C]//Pro-ceedings of Day 3 Wed, May 07, 2014. Houston:OTC, 2014:OTC-25238-MS.
[31] Mauriès B, Lirola F. Development of an LNG tandem offloading system using floating cryogenic hoses-break-ing the boundaries of LNG transfer in open seas[C]//Pro-ceedings of Day 3 Wed, May 07, 2014. Houston:OTC, 2014:OTC-25342-MS.
[32] Van V C, Watson A. Mooring of LNG carriers to a weathervaning floater-side-by-side or stern-by-bow[C]//Offshore Technology Conference. Houston:OTC, 2005:OTC-17154-MS.
[33] Rombaut G, Peigne A, Loisel P, et al. LNG trials of a new 16″ flexible hose based LNG transfer system[C]//Proceedings of All Days. Houston:OTC, 2008:OTC-19405-MS.
文章导航

/