水下浅埋目标物的探测是水下考古和海洋探测的难点。梳理了现有水下浅埋目标物探测技术,认为传统水下掩埋物探测技术尚存不足,三维合成孔径声呐技术更具优势。通过对海底古沉船的实测,认为三维合成孔径声呐能够有效获得浅掩埋目标物三维结构状态、埋深情况和高分辨率图像等信息,可以更有效地实现对水下浅埋目标物的探测与精确识别。
The detection of shallow buried objects is a difficult problem in underwater archaeology and marine survey. In this paper, the existing detection techniques of shallow buried objects under water are sorted out, and it is considered that the traditional detection techniques of buried objects under water have disadvantages, and three-dimensional synthetic aperture sonar technology is more advantageous. Through the measurement of ancient shipwrecks on the seabed, this paper believes that 3D synthetic aperture sonar can effectively obtain the information of three-dimensional structure, buried depth and high-resolution image of shallow buried objects, which can realize the detection and accurate identification of shallow buried objects more effectively.
[1] 中国工程科技2035发展战略研究海洋领域课题组. 中国海洋工程科技2035发展战略研究[J]. 中国工程科学, 2017, 19(1): 108-117.
[2] 宋帅, 周勇, 张坤鹏, 等. 高精度和高分辨率水下地形地貌探测技术综述[J]. 海洋开发与管理, 2019, 36(6): 74-79.
[3] 王伟平, 张志强, 秦宇博, 等. 亚洲快线海底光缆香港段路由条件及评价[J]. 海洋测绘, 2017, 37(4): 71-75.
[4] 孟宪阔, 严天赦. 常用海底管道探测技术比较分析[J]. 港工技术, 2017, 54(2): 109-112.
[5] 张志强, 刘强, 贺惠忠, 等. 汕头海域海底光缆路由条件及评价[J]. 海洋测绘, 2012, 32(6): 44-47.
[6] 柯泽贤, 赵俊生, 任来平, 等. 水下物体磁探测线间距的影响因素[J]. 物探与化探, 2010, 34(1): 71-73, 102.
[7] Xiang X B, Yu C Y, Niu Z M, et al. Subsea cable tracking by autonomous underwater vehicle with magnetic sensing guidance[J]. Sensors, 2016, 16(8): 1335.
[8] 孙鹏. 浅地层剖面仪在海底管线探测中的应用[J]. 珠江水运, 2015(13): 76-77.
[9] 周兴华, 姜小俊, 史永忠. 侧扫声纳和浅地层剖面仪在杭州湾海底管线检测中的应用[J]. 海洋测绘, 2007, 27(4): 64-67.
[10] 张体强. 近岸海域浅地层剖面数据处理技术及应用[J]. 工程地球物理学报, 2023, 20(1): 18-23.
[11] Li B L, Liu W, Liu J Y, et al. Real-time implementation of synthetic aperture sonar imaging on high performance clusters[C]//Proceedings of 11th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing. Piscataway, NJ: IEEE, 2010: 89-92.
[12] Liu W, Li B L, Liu J Y, et al. An automatic ellipse and line targets detection method from synthetic aperture sonar images[C]//Proceedings of SPIE Proceedings, MIPPR 2009: Automatic Target Recognition and Image Analysis. Washington: SPIE, 2009: 851-858.
[13] Liu W, Zhang C H, Liu J Y. Improved synthetic aperture sonar motion compensation combined DPCA with Sub-Aperture Image Correlation[J]. Journal of Electronics (China), 2009, 26(2): 191-197.
[14] Lopera O, Liu W. An introductory study for applying single-pass interferometry to hull mounted sonar data for target height estimation[C]//EUSAR 2014; 10th European Conference on Synthetic Aperture Radar. Offenbach am Main: VDE, 2014: 1-4.
[15] Liu W, Liu J Y, Zhang C H. Research on non-uniform sampling problem when adapting wavenumber algorithm to multiple-receiver synthetic aperture sonar[J]. Chinese Journal of Acoustics, 2010, 29(3): 285-297.
[16] Hayes M P, Gough P T. Synthetic aperture sonar: A review of current status[J]. IEEE Journal of Oceanic Engineering, 2009, 34(3): 207-224.
[17] Groen J, Coiras E, Williams D. Detection rate statistics in synthetic aperture sonar images[C]//Proceedings of the 3rd International Conference and Exhibition on Underwater Acoustic Measurements. Nafplion, Greece: Technologies and Results, 2009: 21-26.
[18] Li H S, Xu J, Zhou T. Study of Multibeam Synthetic Aperture Sonar line-by-line imaging algorithm[C]//Proceedings of 2012 International Conference on Measurement, Information and Control. Piscataway, NJ: IEEE, 2012: 273-277.
[19] Sun W, Zhou T, Wang X J, et al. Study of multibeam synthetic aperture interferometric imaging algorithm[C]// Proceedings of the 2015 International Industrial Informatics and Computer Engineering Conference, Advances in Computer Science Research. Paris, France: Atlantis Press, 2015: 1543-1546.
[20] Hamilton M. Synthetic aperture sonar applied to a multibeam volume imaging sonar[J]. The Journal of the Acoustical Society of America, 2004, 116(4): 2650.
[21] Dinn G. Field experience with a new sub-bottom investigation tool: Acoustic 3-D imaging of the sub-seabed[C]// Proceedings of Oceans. Piscataway, NJ: IEEE, 2012: 1-9.
[22] 刘维, 张作琼, 江泽林, 等. 海洋全景实时三维声学成像系统[J]. 中国科技成果, 2021, 13(3): 68-70.
[23] 郎诚, 茅克勤, 向芸芸. 三维合成孔径声呐在海底掩埋目标探查中的应用现状与展望[J]. 海洋开发与管理, 2021, 38(1): 49-52.
[24] 2020年 度海 洋工 程科 学技 术奖 奖励 公告 [EB/OL]. (2021-06-18) [2023-05-06]. http://www.caoe.org.cn/nr/cont.aspx?itemid=209&id=3224.
[25] 2022年度江苏省科学技术奖获奖名单出炉[EB/OL]. (2023-03-03) [2023-05-06]. https://www.maigoo.com/news/658623.html.