专题:绿色氢能研发

氢在农业中的研发进展

  • 杨海燕 ,
  • 张秋雨 ,
  • 凌翔 ,
  • 刘亚倩 ,
  • 潘琪芳 ,
  • 韩京龙 ,
  • 丁文江
展开
  • 1. 上海市氢科学重点实验室&上海交通大学氢科学中心, 上海 200240;
    2. 上海交通大学材料科学与工程学院, 上海 200240;
    3. 上海交通大学农业与生物学院, 上海 200240;
    4. 上海交通大学轻合金精密成型国家工程研究中心, 上海 200240;
    5. 烟台大学环境与材料工程学院, 烟台 264005
杨海燕,工程师,研究方向为氢科学、氢生物,电子信箱:yanghaiyan@sjtu.edu.cn;丁文江(通信作者),教授,中国工程院院士,研究方向为氢科学、轻合金,电子信箱:wjding@sjtu.edu.cn

收稿日期: 2024-01-10

  修回日期: 2024-03-06

  网络出版日期: 2024-08-28

基金资助

国家自然科学基金面上项目(52371195);上海交通大学氢科学中心双一流项目

Research progress and future prospects of hydrogen in agriculture

  • YANG Haiyan ,
  • ZHANG Qiuyu ,
  • LING Xiang ,
  • LIU Yaqian ,
  • PAN Qifang ,
  • HAN Jinglong ,
  • DING Wenjiang
Expand
  • 1. Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, China;
    2. School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
    3. School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;
    4. National Engineering Research Center of Light Alloys Net Forming & State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China;
    5. School of Environmental and Material Engineering, Yantai University, Yantai 264005, China

Received date: 2024-01-10

  Revised date: 2024-03-06

  Online published: 2024-08-28

摘要

氢由于其抗氧化、生长因子调节、酶活性调节等多种生物学效应以及使用的安全性、环保性,使其在农业生产上的应用前景十分广阔。综述了氢在农业中的研究进展,从氢促进植物生根发芽、调节农产品产量/品质、增强植物抗逆性、延长农产品保鲜期以及提升养殖存活率和产品品质等方面盘点了氢的使用方法,并分析了氢对植物的生物学效应机制。展望了氢在农业中的发展趋势,指出氢农业未来应围绕核心技术研发、应用范围扩大、环保与可持续发展等展开研究。

本文引用格式

杨海燕 , 张秋雨 , 凌翔 , 刘亚倩 , 潘琪芳 , 韩京龙 , 丁文江 . 氢在农业中的研发进展[J]. 科技导报, 2024 , 42(15) : 22 -39 . DOI: 10.3981/j.issn.1000-7857.2024.01.00065

Abstract

Hydrogen has shown broad prospects in agricultural production due to its conducive biological effects, such as antioxidation, regulation of growth factors and enzyme activities, as well as its high safety in practical applications and environmental protection. In this paper we review the research progress of hydrogen utilization in agriculture and summarize hydrogen application methods. We also pinpoint the physiological and biochemical impact of hydrogen on promoting plant rooting and sprouting, regulating yield/quality of agricultural products, improving plant stress resistance, extending the shelf life of agricultural product, and enhancing the survival rate of animal breeding and the quality of resultant products. In addition, we also prospect the development of hydrogen in agriculture. In the future, hydrogen agriculture will focus on the research and development of key technologies, expansion of its application scopes, environmental protection and sustainable development, and market promotion. Hydrogen agriculture is expected to significantly contribute to the sustainable development of China's agriculture.

参考文献

[1] Ohsawa I, Ishikawa M, Takahashi K, et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals[J]. Nature Medicine, 2007, 13: 688-694.
[2] Wang R Y, Yang X J, Chen X F, et al. A critical review for hydrogen application in agriculture: Recent advances and perspectives[J]. Critical Reviews in Environmental Science and Technology, 2024, 54(3): 222-238.
[3] Li L N, Lou W, Kong L S, et al. Hydrogen commonly applicable from medicine to agriculture: From molecular mechanisms to the field[J]. Current Pharmaceutical Design, 2021, 27(5): 747-759.
[4] Gu T, Wang Y X, Cao J J, et al. Hydrogen-rich water pretreatment alleviates the phytotoxicity of bispyribac-sodium to rice by increasing the activity of antioxidant enzymes and enhancing herbicide degradation[J]. AgronomyBasel, 2022, 12(11): 2821-2833.
[5] Wang Y Q, Liu Y H, Wang S, et al. Hydrogen agronomy: Research progress and prospects[J]. Journal of Zhejiang University Science B, 2020, 21(11): 841-855.
[6] 沈文飚, 孙学军. 崭露头角的氢气生物学[J]. 中国生物化学与分子生物学报, 2019, 35(10): 1037-1050.
[7] 张毅华, 陆鈃, 赵海懿, 等. 氢化镁调控的绿豆渗透耐性与一氧化氮介导的脯氨酸代谢有关[J]. 植物生理学报, 2023, 59(10): 1964-1974.
[8] 宋雯佩, 窦婧晗, 郑艳梅, 等. 富氢水3种制备方法的比较研究[J]. 仲恺农业工程学院学报, 2023, 36(4): 26-31.
[9] 潘妮, 程雪, 沈文飚, 等. 富氢水对草莓生长发育及光合作用的影响[J]. 南京农业大学学报, 2023, 46(2): 278-286.
[10] 闫梅, 姚彦东, 牟开萍, 等. 脱落酸通过提高抗氧化酶活性与基因表达参与富氢水增强番茄幼苗抗旱性[J]. 浙江农业学报, 2022, 34(9): 1901-1910.
[11] 李湘妮, 张晶, 刘诗华, 等. 富氢水岩棉培对樱桃番茄耐盐性及产量品质的影响[J]. 农业科技通讯, 2022(12): 154-158.
[12] Islam M A, Shorna M N A, Islam S, et al. Hydrogenrich water: A key player in boosting wheat (Triticum aestivum L.) seedling growth and drought resilience[J]. Scientific Reports, 2023, 13(1): 22521.
[13] Liu F J, Wang Y Q, Zhang G H, et al. Molecular hydrogen positively influences lateral root formation by regulating hydrogen peroxide signaling[J]. Plant Science, 2022, 325: 111500.
[14] Cheng P F, Feng L Y, Zhang S Y, et al. Ammonia borane positively regulates cold tolerance in Brassica napus via hydrogen sulfide signaling[J]. BMC Plant Biology, 2022, 22(1): 585.
[15] Wu Q, Huang L P, Su N N, et al. Calcium-dependent hydrogen peroxide mediates hydrogen-rich water-reduced cadmium uptake in plant roots[J]. Plant Physiology, 2020, 183(3): 1331-1344.
[16] Su J C, Zhang Y H, Nie Y, et al. Hydrogen-induced osmotic tolerance is associated with nitric oxide-mediated proline accumulation and reestablishment of redox balance in alfalfa seedlings[J]. Environmental and Experimental Botany, 2018, 147: 249-260.
[17] Li C X, Huang D J, Wang C L, et al. NO is involved in H 2-induced adventitious rooting in cucumber by regulating the expression and interaction of plasma membrane H+-ATPase and 14-3-3[J]. Planta, 2020, 252(1): 9.
[18] Liu X J, Fang H, Huang P P, et al. Effects of hydrogenrich water on postharvest physiology in scales of Lanzhou lily during storage[J]. Horticulturae, 2023, 9(2): 156.
[19] Hou X M, Qi N N, Wang C L, et al. Hydrogen-rich water promotes the formation of bulblets in Lilium davidii var. unicolor through regulating sucrose and starch metabolism[J]. Planta, 2021, 254(5): 106.
[20] 沈文飚, 王曰桥, 程鹏飞, 等. 一种基于氢气的农作物种子质量改良方法: CN112913372A[P]. 2021-06-08.
[21] 秦秀军, 安全, 张伟, 等. 富氢水制备及保存方法的初步研究[J]. 癌变·畸变·突变, 2013, 25(6): 457-460.
[22] 刘彦洋, 黄国庆, 孙世操, 等. 富氢水的制备、保存及溶氢浓度检测研究进展[J]. 山东化工, 2020, 49(24): 81.
[23] Li L N, Wang J, Jiang K, et al. Preharvest application of hydrogen nanobubble water enhances strawberry flavor and consumer preferences[J]. Food Chemistry, 2022, 377: 131953.
[24] Li L N, Yin Q L, Zhang T, et al. Hydrogen nanobubble water delays petal senescence and prolongs the vase life of cut carnation (Dianthus caryophyllus L.) flowers[J]. Plants, 2021, 10(8): 1662.
[25] Zhao G, Cheng P F, Zhang T, et al. Hydrogen-rich water prepared by ammonia borane can enhance rapeseed (Brassica napus L.) seedlings tolerance against salinity, drought or cadmium[J]. Ecotoxicology and Environmental Safety, 2021, 224: 112640.
[26] Wang Y Q, Jin S S, Liu Z Y, et al. H2 supplied via ammonia borane stimulates lateral root branching via phytomelatonin signaling[J]. Plant Physiology, 2024, 194(2): 884-901.
[27] Li L N, Liu Y H, Wang S, et al. Magnesium hydride-mediated sustainable hydrogen supply prolongs the vase life of cut carnation flowers via hydrogen sulfide[J]. Frontiers in Plant Science, 2020, 11: 595376.
[28] Li Y, Li L N, Wang S, et al. Magnesium hydride acts as a convenient hydrogen supply to prolong the vase life of cut roses by modulating nitric oxide synthesis[J]. Postharvest Biology and Technology, 2021, 177: 111526.
[29] Wang P, Wu J, Yang H Y, et al. Intelligent microneedle patch with prolonged local release of hydrogen and magnesium ions for diabetic wound healing[J]. Bioactive Materials, 2023, 24: 463-476.
[30] 赵懿颖, 徐靖敏, 李芳, 等. 富氢水处理对番茄生长发育和产量的影响[J]. 农业与技术, 2022, 42(22): 6-9.
[31] 丁芳芳, 程茜菲. 富氢水对当归种子发芽的影响[J]. 陕西农业科学, 2020, 66(4): 63-65.
[32] 宋瑞娇, 冯彩军, 齐军仓. 富氢水对干旱胁迫下大麦种子萌发的影响[J]. 新疆农业科学, 2022, 59(1): 79-85.
[33] 李嘉炜, 张白鸽, 陈潇, 等. 富氢水对蔬菜种子萌发和幼苗生长的影响[J]. 长江蔬菜, 2022(8): 10-14.
[34] 杨丽, 肖斌, 肖登荣, 等. 富氢水发芽糙米加工工艺及其品质研究[J]. 食品工业科技, 2021, 42(9): 145-153.
[35] Guan Q, Ding X W, Jiang R, et al. Effects of hydrogenrich water on the nutrient composition and antioxidative characteristics of sprouted black barley[J]. Food Chemistry, 2019, 299: 125095.
[36] 陈茹猛, 陈文奕, 陈惠萍. GA受抑下氢供体对萌发水稻种子淀粉降解的影响[J]. 分子植物育种, 2022, 20(23): 7868-7875.
[37] Xu D K, Cao H, Fang W, et al. Linking hydrogen-enhanced rice aluminum tolerance with the reestablishment of GA/ABA balance and miRNA-modulated gene expression: A case study on germination[J]. Ecotoxicology and Environmental Safety, 2017, 145: 303-312.
[38] Huang P P, Li C X, Che P P, et al. Hydrogen gas enhanced seed germination by increasing trehalose biosynthesis in cucumber[J]. Journal of Plant Growth Regulation, 2023, 42(6): 3908-3922.
[39] Huang P P, Li C X, Liu H W, et al. Hydrogen gas improves seed germination in cucumber by regulating sugar and starch metabolisms[J]. Horticulturae, 2021, 7(11): 456.
[40] 李嘉炜, 陈潇, 张晶, 等. 富氢水在蔬菜育苗中的应用技术研究[J]. 种子科技, 2022, 40(15): 5-8.
[41] Zeng J Q, Yu H. Integrated metabolomic and transcriptomic analyses to understand the effects of hydrogen water on the roots of Ficus hirta vahl[J]. Plants, 2022, 11(5): 602.
[42] 田婧芸, 杨利艳, 王创云, 等. 外源氢气对玉米幼苗耐盐性的影响[J]. 湖南师范大学自然科学学报, 2018, 41(6): 23-30.
[43] Wang Y Q, Lv P X, Kong L S, et al. Nanomaterial-mediated sustainable hydrogen supply induces lateral root formation via nitrate reductase-dependent nitric oxide [J]. Chemical Engineering Journal, 2021, 405: 126905.
[44] Huang D J, Bian B T, Zhang M L, et al. The role and proteomic analysis of ethylene in hydrogen gas-induced adventitious rooting development in cucumber (Cucumis sativus L.) explants[J]. Peer J, 2020, 8: e8896.
[45] Wang B, Bian B T, Wang C L, et al. Hydrogen gas promotes the adventitious rooting in cucumber under cadmium stress[J]. PLoS One, 2019, 14(2): e0212639.
[46] Zhao Z X, Li C X, Liu H W, et al. The involvement of glucose in hydrogen gas-medicated adventitious rooting in cucumber[J]. Plants, 2021, 10(9): 1937.
[47] Zhu Y C, Liao W B. The metabolic constituent and rooting-related enzymes responses of marigold explants to hydrogen gas during adventitious root development[J]. Theoretical and Experimental Plant Physiology, 2017, 29(2): 77-85.
[48] Zhu Y C, Liao W B, Wang M, et al. Nitric oxide is required for hydrogen gas-induced adventitious root formation in cucumber[J]. Journal of Plant Physiology, 2016, 195: 50-58.
[49] Zhu Y C, Liao W B, Niu L J, et al. Nitric oxide is involved in hydrogen gas-induced cell cycle activation during adventitious root formation in cucumber[J]. BMC Plant Biology, 2016, 16(1): 146.
[50] Zhu Y C, Liao W B. A positive role for hydrogen gas in adventitious root development[J]. Plant Signaling & Behavior, 2016, 11(6): e1187359.
[51] 宋韵琼, 张峻, 张俊波, 等. 富氢水处理对青菜产量和品质的影响[J]. 现代农业科技, 2022(8): 49-54.
[52] Jiang Y, Ye Q Y, Ma L, et al. Regulation of growth and physiological properties of fragrant rice seedlings by hydrogen-rich water (HRW) under nitrogen-deficient conditions[J]. Journal of Plant Growth Regulation, 2023, 42(4): 2221-2231.
[53] 宋韵琼, 沙米拉·太来提, 杜红梅. 富氢水处理对小苍兰生长发育的影响[J]. 上海交通大学学报(农业科学版), 2016, 34(3): 55-61.
[54] 刘丰娇, 张晓伟, 李福德, 等. 黄瓜富氢水浸种对低温下幼苗光合碳同化及氮代谢的影响[J]. 园艺学报, 2020, 47(2): 287-300.
[55] Zhao X Q, Chen Q H, Wang Y M, et al. Hydrogen-rich water induces aluminum tolerance in maize seedlings by enhancing antioxidant capacities and nutrient homeostasis[J]. Ecotoxicology and Environmental Safety, 2017, 144: 369-379.
[56] Cheng P F, Wang J, Zhao Z S, et al. Molecular hydrogen increases quantitative and qualitative traits of rice grain in field trials[J]. Plants, 2021, 10(11): 2331.
[57] Hu H L, Li P X, Shen W B. Preharvest application of hydrogen-rich water not only affects daylily bud yield but also contributes to the alleviation of bud browning [J]. Scientia Horticulturae, 2021, 287: 110267.
[58] 杨瑞怡, 李强, 李湘妮, 等. 富氢水浇灌在网室叶菜栽培中的应用试验[J]. 农业工程技术, 2019, 39(35): 29.
[59] 丁芳芳, 王飞娟. 富氢水浇灌对当归生长性能的影响[J]. 陕西农业科学, 2019, 65(4): 54-56.
[60] Zhu C, Yang L, Nie P, et al. Effects of hydrogen-rich water on the nutritional properties, volatile profile and texture of germinated brown rice[J]. International Journal of Food Science & Technology, 2022, 57(12): 7666-7680.
[61] 梁木华, 韦一, 陈家琦, 等. 不同形态镁肥对生菜生长发育及品质的影响[J/OL]. 中国土壤与肥料, 1-14[2024-07-24]. http://kns.cnki.net/kcms/detail/11.5498.S.20240624.1148.002.html.
[62] Zhang X Y, Wei J Y, Huang Y F, et al. Increased cytosolic calcium contributes to hydrogen-rich water-promoted anthocyanin biosynthesis under UV-A irradiation in radish sprouts hypocotyls[J]. Frontiers in Plant Science, 2018, 9: 1020.
[63] Xie Y J, Zhang W, Duan X L, et al. Hydrogen-rich water-alleviated ultraviolet-B-triggered oxidative damage is partially associated with the manipulation of the metabolism of (iso) flavonoids and antioxidant defence in Medicago sativa[J]. Functional Plant Biology, 2015, 42(12): 1141-1157.
[64] 李晓花, 杨雯雯. 富氢水处理对党参多糖的影响[J]. 中外企业家, 2020(15): 249.
[65] Yan M, Yao Y, Mou K P, et al. The involvement of abscisic acid in hydrogen gas-enhanced drought resistance in tomato seedlings[J]. Scientia Horticulturae, 2022, 292(12): 110631.
[66] Fu X M, Ma L, Gui R F, et al. Differential response of fragrant rice cultivars to salinity and hydrogen rich water in relation to growth and antioxidative defense mechanisms[J]. International Journal of Phytoremediation, 2021, 23(11): 1203-1211.
[67] Su J C, Yang X H, Shao Y D, et al. Molecular hydrogeninduced salinity tolerance requires melatonin signalling in Arabidopsis thaliana[J]. Plant, Cell & Environment, 2021, 44(2): 476-490.
[68] Wu Q, Su N N, Shabala L, et al. Understanding the mechanistic basis of ameliorating effects of hydrogen rich water on salinity tolerance in barley[J]. Environmental and Experimental Botany, 2020, 177: 104136.
[69] Xu S, Zhu S S, Jiang Y L, et al. Hydrogen-rich water alleviates salt stress in rice during seed germination[J]. Plant and Soil, 2013, 370(1): 47-57.
[70] Yu Y, Zhang H N, Xing H Y, et al. Regulation of growth and salt resistance in cucumber seedlings by hydrogen-rich water[J]. Journal of Plant Growth Regulation, 2023, 42(1): 134-153.
[71] Zhang J B, Huang A W, Du H M. Transcriptome analysis reveals the effects of hydrogen gas on NaCl stress in purslane roots[J]. Scientia Horticulturae, 2023, 319: 112142.
[72] 田婧芸. 富氢水对盐胁迫下玉米根系的影响[D]. 临汾: 山西师范大学, 2019.
[73] 张韦钰, 王春勇, 杜红梅. 富氢水对草地早熟禾耐盐性的影响以及与抗氧化酶活性的关系[J]. 草地学报, 2021, 29(7): 1436-1445.
[74] Cui W T, Fang P, Zhu K K, et al. Hydrogen-rich water confers plant tolerance to mercury toxicity in alfalfa seedlings[J]. Ecotoxicology and Environmental Safety, 2014, 105: 103-111.
[75] Cui W T, Gao C Y, Fang P, et al. Alleviation of cadmium toxicity in Medicago sativa by hydrogen-rich water [J]. Journal of Hazardous Materials, 2013, 260: 715-724.
[76] Dai C, Cui W T, Pan J C, et al. Proteomic analysis provides insights into the molecular bases of hydrogen gasinduced cadmium resistance in Medicago sativa[J]. Journal of Proteomics, 2017, 152: 109-120.
[77] He J J, Cheng P F, Wang J, et al. Magnesium hydride confers copper tolerance in alfalfa via regulating nitric oxide signaling[J]. Ecotoxicology and Environmental Safety, 2022, 231: 113197.
[78] Ma L, Kong L L, Gui R F, et al. Application of hydrogen-rich water modulates physio-biochemical functions and early growth of fragrant rice under Cd and Pb stress [J]. Environmental Science and Pollution Research International, 2021, 28(41): 58558-58569.
[79] Su N N, Wu Q, Chen H, et al. Hydrogen gas alleviates toxic effects of cadmium in Brassica campestris seedlings through up-regulation of the antioxidant capacities: Possible involvement of nitric oxide[J]. Environmental Pollution, 2019, 251: 45-55.
[80] Wu X, Su N N, Yue X M, et al. IRT1 and ZIP2 were involved in exogenous hydrogen-rich water-reduced cadmium accumulation in Brassica chinensis and Arabidopsis thaliana[J]. Journal of Hazardous Materials, 2021, 407: 124599.
[81] Wu X, Zhu Z B, Chen J H, et al. Transcriptome analysis revealed pivotal transporters involved in the reduction of cadmium accumulation in pak choi (Brassica chinensis L.) by exogenous hydrogen-rich water[J]. Chemosphere, 2019, 216: 684-697.
[82] 田婧芸, 张慧洁, 陕嘉楠, 等. 富氢水处理对铜胁迫下小麦幼苗生长及其细胞结构的影响[J]. 河南农业大学学报, 2018, 52(2): 193-198.
[83] 卢慧, 伍冰倩, 王伊帆, 等. 富氢水处理对采后番茄果实灰霉病抗性的影响[J]. 河南农业科学, 2017, 46(2): 64-68.
[84] Shao Y D, Lin F, Wang Y Q, et al. Molecular hydrogen confers resistance to rice stripe virus[J]. Microbiology Spectrum, 2023, 11(2): e0441722.
[85] Wang Y Q, Zhang T, Wang J, et al. Regulation of chlorothalonil degradation by molecular hydrogen[J]. Journal of Hazardous Materials, 2022, 424(Pt A): 127291.
[86] Zhang T, Wang Y Q, Zhao Z S, et al. Degradation of carbendazim by molecular hydrogen on leaf models[J]. Plants, 2022, 11(5): 621.
[87] An R H, Luo S F, Zhou H S, et al. Effects of hydrogenrich water combined with vacuum precooling on the senescence and antioxidant capacity of pakchoi (Brassica rapa subsp. Chinensis)[J]. Scientia Horticulturae, 2021, 289: 110469.
[88] Chen Q H, Zhao X Q, Lei D K, et al. Hydrogen-rich water pretreatment alters photosynthetic gas exchange, chlorophyll fluorescence, and antioxidant activities in heat-stressed cucumber leaves[J]. Plant Growth Regulation, 2017, 83(1): 69-82.
[89] Liu S, Zha Z P, Chen S Q, et al. Hydrogen-rich water alleviates chilling injury-induced lignification of kiwifruit by inhibiting peroxidase activity and improving antioxidant system[J]. Journal of the Science of Food and Agriculture, 2023, 103(5): 2675-2680.
[90] 王怡玫, 司雨, 张晶, 等. 富氢水处理对高温高盐胁迫下水果黄瓜产量和品质的影响[J]. 现代农业科技, 2024(8): 23-26.
[91] Wang X, An Z H, Liao J M, et al. The role and mechanism of hydrogen-rich water in the Cucumis sativus response to chilling stress[J]. International Journal of Molecular Sciences, 2023, 24(7): 6702.
[92] Xu S, Jiang Y L, Cui W T, et al. Hydrogen enhances adaptation of rice seedlings to cold stress via the reestablishment of redox homeostasis mediated by miRNA expression[J]. Plant and Soil, 2017, 414(1): 53-67.
[93] 李湘妮, 刘诗华, 张晶, 等. 富氢水对长季节基质栽培彩椒抗逆性和品质的影响[J]. 蔬菜, 2022(12): 18-22.
[94] 刘丰娇, 蔡冰冰, 孙胜楠, 等. 富氢水浸种增强黄瓜幼苗耐冷性的作用及其生理机制[J]. 中国农业科学, 2017, 50(5): 881-889.
[95] Liu Y X, Pan J J, Ni S, et al. Transcriptome and metabonomics combined analysis revealed the defense mechanism involved in hydrogen-rich water-regulated cold stress response of Tetrastigma hemsleyanum[J]. Frontiers in Plant Science, 2022, 13: 889726.
[96] Xie Y J, Mao Y, Zhang W, et al. Reactive oxygen species-dependent nitric oxide production contributes to hydrogen-promoted stomatal closure in Arabidopsis[J]. Plant Physiology, 2014, 165(2): 759-773.
[97] Song R J, Zhang X C, Feng C J, et al. Exogenous hydrogen promotes germination and seedling establishment of barley under drought stress by mediating the ASA-GSH cycle and sugar metabolism[J]. Journal of Plant Growth Regulation, 2023, 42(5): 2749-2762.
[98] Wu Q, Su N N, Chen Q, et al. Cadmium-induced hydrogen accumulation is involved in cadmium tolerance in Brassica campestris by reestablishment of reduced glutathione homeostasis[J]. PLoS One, 2015, 10(10): e0139956.
[99] Ren A, Liu R, Miao Z G, et al. Hydrogen-rich water regulates effects of ROS balance on morphology, growth and secondary metabolism via glutathione peroxidase in Ganoderma lucidum[J]. Environmental Microbiology, 2017, 19(2): 566-583.
[100] 陈革豫, 丁芳芳. 富氢水的应用研究进展[J]. 陕西农业科学, 2020, 66(7): 86-89.
[101] 董长勇, 于皎雪, 于伟厚, 等. 富氢水在国内外应用的研究进展[J]. 食品工业, 2022, 43(9): 218-223.
[102] Hancock J T, Russell G, Stratakos A C. Molecular hydrogen: The postharvest use in fruits, vegetables and the floriculture industry[J]. Applied Sciences, 2022, 12(20): 10448.
[103] 蔡敏, 杜红梅. 富氢水预处理对香石竹切花瓶插寿命的影响[J]. 上海交通大学学报(农业科学版), 2015, 33(6): 41-45.
[104] 任鹏举, 李雪萍, 徐晓婷, 等. 氢气对切花百合瓶插寿命和品质的影响[J]. 甘肃农业大学学报, 2017, 52(1): 103-108.
[105] Ren P J, Jin X, Liao W B, et al. Effect of hydrogenrich water on vase life and quality in cut lily and rose flowers[J]. Horticulture, Environment, and Biotechnology, 2017, 58(6): 576-584.
[106] 宋韵琼, 丛峰松, 李朝阳, 等. 富氢水预处理对小苍兰切花瓶插寿命及其抗氧化系统的影响[J]. 上海交通大学学报(农业科学版), 2018, 36(1): 1-6.
[107] Zhang Y H, Zhao G, Cheng P F, et al. Nitrite accumulation during storage of tomato fruit as prevented by hydrogen gas[J]. International Journal of Food Properties, 2019, 22(1): 1425-1438.
[108] Zhao X M, Meng X M, Li W X, et al. Effect of hydrogen-rich water and slightly acidic electrolyzed water treatments on storage and preservation of fresh-cut kiwifruit[J]. Journal of Food Measurement and Characterization, 2021, 15(6): 5203-5210.
[109] Li F J, Hu Y, Shan Y X, et al. Hydrogen-rich water maintains the color quality of fresh-cut Chinese water chestnut[J]. Postharvest Biology and Technology, 2022, 183: 111743.
[110] Dong W Q, Shi L Y, Li S S, et al. Hydrogen-rich water delays fruit softening and prolongs shelf life of postharvest okras[J]. Food Chemistry, 2023, 399: 133997.
[111] Sun Y N, Qiu W Y, Fang X Q, et al. Hydrogen-rich water treatment of fresh-cut kiwifruit with slightly acidic electrolytic water: Influence on antioxidant metabolism and cell wall stability[J]. Foods, 2023, 12(2): 426.
[112] Jiang K, Kuang Y, Feng L Y, et al. Molecular hydrogen maintains the storage quality of Chinese chive through improving antioxidant capacity[J]. Plants, 2021, 10(6): 1095.
[113] Wang Y Q, Wang J J, Kuang Y, et al. Packaging with hydrogen gas modified atmosphere can extend chicken egg storage[J]. Journal of the Science of Food and Agriculture, 2022, 102(3): 976-983.
[114] Ceylan M M, Bulut M, Alwazeer D, et al. Evaluation of the impact of hydrogen-rich water on the quality attribute notes of butter[J]. The Journal of Dairy Research, 2022, 89(4): 431-439.
[115] Bulut M, Çelebi Sezer Y, Ceylan M M, et al. Hydrogenrich water can reduce the formation of biogenic amines in butter[J]. Food Chemistry, 2022, 384: 132613.
[116] Jiang K, Zhang Y Y, Cai C X, et al. Hydrogen-based modified atmosphere packaging delays the deterioration of dried shrimp (Fenneropenaeus chinensis) during accelerated storage[J]. Food Control, 2023, 152: 109897.
[117] Zeng J Q, Zhang M Y, Sun X J. Molecular hydrogen is involved in phytohormone signaling and stress responses in plants[J]. PLoS One, 2013, 8(8): e71038.
[118] Wu M Z, Xie X D, Wang Z, et al. Hydrogen-rich water alleviates programmed cell death induced by GA in wheat aleurone layers by modulation of reactive oxygen species metabolism[J]. Plant Physiology and Biochemistry, 2021, 163: 317-326.
[119] Wu Q, Su N N, Huang X, et al. Hydrogen-rich water promotes elongation of hypocotyls and roots in plants through mediating the level of endogenous gibberellin and auxin[J]. Functional Plant Biology, 2020, 47(9): 771-778.
[120] Liu F, Li J, Liu Y. Molecular hydrogen can take part in phytohormone signal pathways in wild rice[J]. Biologia Plantarum, 2016, 60(2): 311-319.
[121] 陈亚, 魏全伟, 杜文超, 等. 乳果糖和富氢水对断奶仔猪采食霉变玉米后引起卵巢机能障碍的缓解作用[J]. 畜牧兽医学报, 2018, 49(12): 2641-2651.
[122] Zhang B, Lu C, Zang Y, et al. Drinking with electrolyzed reduced hydrogen-rich water alters egg quality, intestinal morphology, and antioxidant activities in heat-stressed layers[J]. Journal of Applied Poultry Research, 2022, 31(2): 100244.
[123] 计徐. 乳果糖和富氢水对采食镰刀菌污染玉米断奶仔猪肠道损伤保护作用的研究[D]. 南京: 南京农业大学, 2020.
[124] 张青. 乳果糖和富氢水对采食镰刀菌污染日粮仔猪生长性能、肝脾功能和抗氧化性能的影响[D]. 南京: 南京农业大学, 2018.
[125] Zheng W J, Ji X, Zhang Q, et al. Hydrogen-rich water and lactulose protect against growth suppression and oxidative stress in female piglets fed Fusarium toxins contaminated diets[J]. Toxins, 2018, 10(6): 228.
[126] Zheng W J, Ji X, Zhang Q, et al. Intestinal microbiota ecological response to oral administrations of hydrogenrich water and lactulose in female piglets fed a Fusarium toxin-contaminated diet[J]. Toxins, 2018, 10(6): 246.
[127] 张青, 计徐, 姚文, 等. 乳果糖和富氢水对采食镰刀菌污染玉米的仔猪血液指标和肝脾形态的影响[J]. 畜牧与兽医, 2018, 50(5): 56-64.
[128] Wang M, Wang R, Zhang X M, et al. Molecular hydrogen generated by elemental magnesium supplementation alters rumen fermentation and microbiota in goats [J]. The British Journal of Nutrition, 2017, 118(6): 401-410.
[129] Wang R, Si H B, Wang M, et al. Effects of elemental magnesium and magnesium oxide on hydrogen, methane and volatile fatty acids production in in vitro rumen batch cultures[J]. Animal Feed Science and Technology, 2019, 252: 74-82.
[130] 王勇生, 唐中林, 胡俊茹, 等. 一种提高加州鲈仔鱼生产性能的养殖方法: CN116616222A[P]. 2023-08-22.
[131] 王勇生, 张君红, 胡俊茹, 等. 一种提高乌鳢仔鱼生产性能的养殖方法: CN116724926A[P]. 2023-09-12.
文章导航

/