专题:绿色氢能研发

氢冶金场景下规模化固态氢储运技术的开发及应用

  • 魏炜 ,
  • 饶文涛
展开
  • 宝武清洁能源有限公司, 上海 201900
魏炜,高级工程师,研究方向为清洁能源,电子信箱:weiwei@baosteel.com;饶文涛(通信作者),教授级高级工程师,研究方向为氢能源,电子信箱:raowt@baosteel.com

收稿日期: 2024-05-22

  修回日期: 2024-06-23

  网络出版日期: 2024-08-28

基金资助

国家重点研发计划项目(2022YFB3803704);上海市科委项目(21DZ1208200)

Development and application prospect of large-scale solid-state hydrogen storage and transportation technology for hydrogen metallurgy

  • WEI Wei ,
  • RAO Wentao
Expand
  • WEI Wei, RAO Wentao

Received date: 2024-05-22

  Revised date: 2024-06-23

  Online published: 2024-08-28

摘要

钢铁行业的氢冶金是未来氢能规模化应用的主要场景之一,炼铁炉利用氢气作为还原剂,替代传统的碳基还原过程,从而减少温室气体排放。在氢冶金过程中,建立高效可靠的氢储运产业链是成败的关键。简述了氢冶金背景和国内外氢气储存领域的研究进展和应用现状,对各种储存技术进行了简明分析。结合氢冶金工厂的特点,提出“气固相分离式固态氢储运技术”的方案,理论上可实现经济、安全、长距离、面向工业应用的大规模氢储运。未来可通过工程化手段实现大宗含氢物料的制备和存储运输,并与冶金或化工工厂的原料工艺流程实现有效衔接,对上游合金资源产业和可再生能源制氢产业也有重要推动作用。

本文引用格式

魏炜 , 饶文涛 . 氢冶金场景下规模化固态氢储运技术的开发及应用[J]. 科技导报, 2024 , 42(15) : 40 -48 . DOI: 10.3981/j.issn.1000-7857.2024.05.00459

Abstract

Hydrogen metallurgy in the steel industry will be the main scenario for large-scale hydrogen application in the future. Blast furnaces can use hydrogen as a reducing agent to replace the traditional carbon-based reduction process, thereby reducing greenhouse gas emissions. In the process of hydrogen metallurgy, establishment of an efficient and reliable hydrogen storage industry chain is the key to success. A brief review on hydrogen metallurgy and worldwide development of hydrogen storage and transportation tech especially via solid-metal hydride is given in this paper. Combined with the demand on hydrogen storage and transportation for hydrogen metallurgy, a scheme for massive H2 usage in iron&steel plant via conceptional "gas-solid-gas phases" separate charge&discharge system by solid-metal hydride is proposed to reach a theoretically economic, safe, longdistance and scale-up industrial application. In the future, production and storage&transportation for massive H2-contained solid material for raw-material handling process in iron&steel or chemical plants will be realized by attainable engineering, which will propel revolutionary change in the upstream alloy industry and green H2-via-renewable industry.

参考文献

[1] Schlapbach L, Züttel A. Hydrogen-storage materials for mobile applications[J]. Nature, 2001, 414(6861): 353-358.
[2] Ley M B, Meggouh M, Moury R, et al. Development of hydrogen storage tank systems based on complex metal hydrides[J]. Materials, 2015, 8(9): 5891-5921.
[3] Barbir F, Basile A, Veziroglu T N. Compendium of Hydrogen Energy[M]. Sawston Cambridge: Woodhead Publishing, 2015.
[4] Tang J, Chu M S, Li F, et al. Development and progress on hydrogen metallurgy[J]. International Journal of Minerals, Metallurgy and Materials, 2020, 27(6): 713-723.
[5] Ekpotu W F, Akintola J, Obialor M C, et al. Historical review of hydrogen energy storage technology[J]. World Journal of Engineering and Technology, 2023, 11(3): 454-475.
[6] He T, Cao H J, Chen P. Complex hydrides for energy storage, conversion, and utilization[J]. Advanced Materials, 2019, 31(50): e1902757.
[7] 黄宣旭, 练继建, 沈威, 等. 中国规模化氢能供应链的经济性分析[J]. 南方能源建设, 2020, 7(2): 1-13.
[8] Rusman N A A, Dahari M. A review on the current progress of metal hydrides material for solid-state hydrogen storage applications[J]. International Journal of Hydrogen Energy, 2016, 41(28): 12108-12126.
[9] 张真, 杜宪军. 碳中和目标下氢冶金减碳经济性研究[J]. 价格理论与实践, 2021(5): 65-68.
文章导航

/