[1] Zhao X Y, Zeng Z F, Wu Y G, et al. Interpretation of gravity and magnetic data on the hot dry rocks (HDR) delineation for the enhanced geothermal system (EGS) in Gonghe Town, China[J]. Environmental Earth Sciences, 2020, 79(16): 390.
[2] 许天福, 张延军, 于子望, 等. 干热岩水力压裂实验室模拟研究[J]. 科技导报, 2015, 33(19): 35-39.
[3] Cheng Y X, Zhang Y J, Yu Z W, et al. An investigation on hydraulic fracturing characteristics in granite geothermal reservoir[J]. Engineering Fracture Mechanics, 2020, 237: 107252.
[4] Moska R, Labus K, Kasza P, et al. Geothermal potential of hot dry rock in south-east Baltic Basin countries: A review[J]. Energies, 2023, 16(4): 1662.
[5] Liu Y Z, Liu L J, Jin G, et al. Simulation-based evaluation of the effectiveness of fiber-optic sensing in monitoring and optimizing water circulation in next-generation enhanced geothermal systems[J]. Geoenergy Science and Engineering, 2023, 221: 211378.
[6] Liu Z B, Wang C, Zhang M S, et al. Cracking property and brittleness evaluation of granite under high-temperature true triaxial compression in geothermal systems[J]. Geomechanics and Geophysics for Geo-Energy and GeoResources, 2023, 9(1): 99.
[7] Zhang W, Qu Z Q, Guo T K, et al. Study of the enhanced geothermal system (EGS) heat mining from variably fractured hot dry rock under thermal stress[J]. Renewable Energy, 2019, 143: 855-871.
[8] Li P F, Sun Q, Gao Q, et al. Size effect of failure mode of thermally damaged torus granite[J]. International Journal of Rock Mechanics and Mining Sciences, 2023, 163: 105331.
[9] 张洪伟, 万志军, 赵毅鑫, 等. 深层地热储层水力剪切增透机制研究进展[J]. 煤炭学报, 2021, 46(10): 3172-3185.
[10] 许天福, 张延军, 曾昭发, 等. 增强型地热系统(干热岩)开发技术进展[J]. 科技导报, 2012, 30(32): 42-45.
[11] 窦斌, 肖鹏, 郑君, 等. 二氧化碳爆破致裂激发干热岩储层作用效果[J]. 地质科技通报, 2022, 41(5): 150-159.
[12] 曲占庆, 林强, 郭天魁, 等. 顺北油田碳酸盐岩酸蚀裂缝导流能力实验研究[J]. 断块油气田, 2019, 26(4): 533-536.
[13] Zhao K, Wang X Y, Song W J, et al. Evaluation methods and influence factors of heat extraction performance in hot dry rock reservoir under multi-field coupling[J]. Energy Exploration & Exploitation, 2023, 41(4): 1457-1483.
[14] Wang D B, Zhou F J, Dong Y C, et al. Experimental investigation of thermal effect on fracability index of geothermal reservoirs[J]. Natural Resources Research, 2021, 30(1): 273-288.
[15] 张保建, 李燕燕, 高俊, 等. 河北省马头营干热岩的成因机制及其示范意义[J]. 地质学报, 2020, 94(7): 2036-2051.
[16] Singh M, Chaudhuri A. Evaluation of low-to moderateenthalpy shallow sedimentary reservoirs for CCS-CPG systems[M]//Enhanced Geothermal Systems(EGS). London: CRC Press, 2023: 1-16.
[17] 张乐, 胥蕊娜, 姜培学. 花岗岩平滑裂隙内超临界CO2对流换热实验研究[J]. 工程热物理学报, 2016, 37(7): 1500-1505.
[18] Liao J X, Hu K, Mehmood F, et al. Embedded discrete fracture network method for numerical estimation of long-term performance of CO2-EGS under THM coupled framework[J]. Energy, 2023, 285: 128734.
[19] 李静岩, 刘中良, 周宇, 等. CO2羽流地热系统热开采过程热流固耦合模型及数值模拟研究[J]. 化工学报, 2019, 70(1): 72-82.
[20] 石岩, 冯波, 许天福, 等. 二氧化碳羽流地热系统水-岩-气相互作用: 以松辽盆地泉头组为例[J]. 吉林大学学报(地球科学版), 2014, 44(6): 1980-1987.
[21] Singh A, Zoback M, Neupane G, et al. Slip tendency analysis of fracture networks to determine suitability of candidate testbeds for the EGS collab hydroshear experiment[J]. Geothermal Resources Council Transactions, 2019(43): 405-424.
[22] Kang F C, Li Y C, Tang C A, et al. Competition between cooling contraction and fluid overpressure on aperture evolution in a geothermal system[J]. Renewable Energy, 2022, 186: 704-716.
[23] Wang Q Y, Wang D B, Fu W, et al. Effects of saturated fluids on petrophysical properties of hot dry rock at high temperatures: An experimental study[J]. Geothermics, 2024, 121: 103048.
[24] 滕毅. 干热岩水-气注入时渗流特性及采热效率研究[D]. 徐州: 中国矿业大学, 2020.
[25] Meng N, Li T L, Wang J Q, et al. Structural improvement and thermodynamic optimization of a novel supercritical CO 2 cycle driven by hot dry rock for power generation[J]. Energy Conversion and Management, 2021, 235: 114014.
[26] Rohit R V, Vipin Raj R, Kiplangat D C, et al. Tracing the evolution and charting the future of geothermal energy research and development[J]. Renewable and Sustainable Energy Reviews, 2023, 184: 113531.
[27] Xiong F, Zhu C, Feng G, et al. A three-dimensional coupled thermo-hydro model for geothermal development in discrete fracture networks of hot dry rock reservoirs[J]. Gondwana Research, 2023, 122: 331-347.
[28] 王帅, 赵国贞, 刘超. 坚硬顶板下近距离煤层群切顶卸压技术研究[J]. 煤炭工程, 2022, 54(9): 75-80.
[29] 李广林, 郤保平, 崔继明. 不同地应力下水压裂隙扩展演化数值模拟分析[J]. 矿业研究与开发, 2017, 37(10): 86-88.
[30] 郤保平, 赵阳升. 600℃内高温状态花岗岩遇水冷却后力学特性试验研究[J]. 岩石力学与工程学报, 2010, 29(5): 892-898.
[31] 靳佩桦, 胡耀青, 邵继喜, 等. 高温花岗岩遇水冷却后孔隙结构及渗透性研究[J]. 太原理工大学学报, 2019, 50(4): 478-484.
[32] 武晋文, 赵阳升, 万志军, 等. 高温均匀压力花岗岩热破裂声发射特性实验研究[J]. 煤炭学报, 2012, 37(7): 1111-1117.
[33] Meng Q B, Liu J F, Ren L, et al. Experimental study on rock strength and deformation characteristics under triaxial cyclic loading and unloading conditions[J]. Rock Mechanics and Rock Engineering, 2021, 54(2): 777-797.
[34] Wang Y Y, Yu H L, Wu S C, et al. Progress on heat transfer in fractures of hot dry rock enhanced geothermal system[J]. Energy Engineering, 2021, 118(4): 797-823.
[35] 刘汉青, 胡才博, 赵桂萍. 增强地热系统停止运行后温度恢复过程的数值模拟[J]. 中国科学院大学学报, 2024, 41(2): 222-230.
[36] Yang S Q, Tian W L, Elsworth D, et al. An experimental study of effect of high temperature on the permeability evolution and failure response of granite under triaxial compression[J]. Rock Mechanics and Rock Engineering, 2020, 53(10): 4403-4427.
[37] Yang S Q, Ranjith P G, Jing H W, et al. An experimental investigation on thermal damage and failure mechanical behavior of granite after exposure to different high temperature treatments[J]. Geothermics, 2017, 65: 180-197.
[38] Wu X T, Li Y C, Li T J, et al. Hot dry rock preconditioning by two-stage fracturing in excavation-enhanced geothermal system[J]. Geoenergy Science and Engineering, 2023, 229: 212078.
[39] 苏广宁. 煤岩复合体水力压裂裂缝穿层扩展实验研究[J]. 矿业安全与环保, 2024, 51(2): 18-24.
[40] Frash L P, Gutierrez M, Hampton J. True-triaxial apparatus for simulation of hydraulically fractured multiborehole hot dry rock reservoirs[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 70: 496-506.
[41] Yin W T, Zhao Y S, Feng Z J. Experimental research on the permeability of fractured-subsequently-filled granite under high temperature-high pressure and the application to HDR geothermal mining[J]. Renewable Energy, 2020, 153: 499-508.
[42] Wang C Y, Zhang D M, Yu B C, et al. Deformation and seepage characteristics of coal under true triaxial loading-unloading[J]. Rock Mechanics and Rock Engineering, 2023, 56(4): 2673-2695.
[43] Zhang W, Guo T K, Qu Z Q, et al. Research of fracture initiation and propagation in HDR fracturing under thermal stress from meso-damage perspective[J]. Energy, 2019, 178: 508-521.
[44] 许天福, 袁益龙, 姜振蛟, 等. 干热岩资源和增强型地热工程: 国际经验和我国展望[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1139-1152.
[45] Wang K X, Liu Z B, Wu M, et al. Experimental study of mechanical properties of hot dry granite under thermalmechanical couplings[J]. Geothermics, 2024, 119: 102974.