综述

增强型地热系统实验模拟装置研发进展

  • 唐佳伟 ,
  • 李井峰 ,
  • 方杰 ,
  • 刘月阳 ,
  • 郭强 ,
  • 时俊杰 ,
  • 李杰
展开
  • 1. 北京低碳清洁能源研究院煤炭开采水资源保护与利用全国重点实验室, 北京 102211;
    2. 中国地质大学(北京)水资源与环境学院, 北京 100083;
    3. 国家能源集团神东煤炭技术研究院, 榆林 719315
唐佳伟,高级工程师,研究方向为深部地热能开发与模拟,电子信箱:20062356@ceic.com;李井峰(通信作者),教授级高级工程师,研究方向为深部能源开发与利用,电子信箱:10000439@ceic.com

收稿日期: 2024-03-27

  修回日期: 2024-05-12

  网络出版日期: 2024-08-28

基金资助

国家能源集团科技项目(GJNY-23-84)

On the development status and future direction of enhanced geother-mal system experimental simulation equipment

  • TANG Jiawei ,
  • LI Jingfeng ,
  • FANG Jie ,
  • LIU Yueyang ,
  • GUO Qiang ,
  • SHI Junjie ,
  • LI Jie
Expand
  • 1. State Key Laboratory of Water Resource Protection and Utilization in Coal Mining, National Institute of Low Carbon and Clean Energy, Beijing 102211, China;
    2. School of Water Resources and Environment, China University of Geosciences-Beijing, Beijing 100083, China;
    3. Technology Research Institute, CHN Energy Shendong Coal Group Co., Ltd., Yulin 719315, China

Received date: 2024-03-27

  Revised date: 2024-05-12

  Online published: 2024-08-28

摘要

梳理了国内外增强型地热系统(EGS)模拟实验装置研发进展,归纳了以高温高压反应釜、岩心夹持类渗流模拟系统、岩石三轴电液伺服控制系统和大尺寸真三轴实验系统为代表的4类模拟装置的功能特点,分析了不同实验模拟装置适用范围及其对于EGS建设关键技术研究的支撑作用。结合国内外在干热岩资源开发利用工程建设中存在的问题,分析了 EGS模拟实验装置的研发方向,在现有装置平台的基础上提出了建设大型模块化干热岩开发模拟实验平台的设计思路,论述了平台装置的系统构成和模块化功能特点,探讨了热储区形成机理和复杂地质条件下多场耦合作用机制。

本文引用格式

唐佳伟 , 李井峰 , 方杰 , 刘月阳 , 郭强 , 时俊杰 , 李杰 . 增强型地热系统实验模拟装置研发进展[J]. 科技导报, 2024 , 42(15) : 69 -81 . DOI: 10.3981/j.issn.1000-7857.2024.03.01204

Abstract

The research and development progress of enhanced geothermal system(EGS) simulation experimental devices at home and abroad is reviewed in this paper. The functional characteristics of four types of simulation devices, including hightemperature and high-pressure reaction vessels, rock core clamping seepage simulation systems, rock triaxial electro-hydraulic servo control systems, and large-scale true triaxial experimental systems are sum-marized. Then, the applicability of different experimental simulation devices and their supporting roles in key technologies research for EGS construction are compared and analyzed. Based on the problems existing both domestically and internationally in the development and utilization of dry hot rock resources, the research and development direction of EGS simulation experimental equipment are elaborated. A design idea of building a large-scale modular dry hot rock development simulation experimental platform is proposed on the basis of ex-isting equipment platform. The system composition and modular functional characteristics of the new platform device are explained for the study of formation mechanism of thermal storage areas and the coupling mechanism under complex geological conditions, which provides important data support for the engineering practice of dry hot rock development and utilization.

参考文献

[1] Zhao X Y, Zeng Z F, Wu Y G, et al. Interpretation of gravity and magnetic data on the hot dry rocks (HDR) delineation for the enhanced geothermal system (EGS) in Gonghe Town, China[J]. Environmental Earth Sciences, 2020, 79(16): 390.
[2] 许天福, 张延军, 于子望, 等. 干热岩水力压裂实验室模拟研究[J]. 科技导报, 2015, 33(19): 35-39.
[3] Cheng Y X, Zhang Y J, Yu Z W, et al. An investigation on hydraulic fracturing characteristics in granite geothermal reservoir[J]. Engineering Fracture Mechanics, 2020, 237: 107252.
[4] Moska R, Labus K, Kasza P, et al. Geothermal potential of hot dry rock in south-east Baltic Basin countries: A review[J]. Energies, 2023, 16(4): 1662.
[5] Liu Y Z, Liu L J, Jin G, et al. Simulation-based evaluation of the effectiveness of fiber-optic sensing in monitoring and optimizing water circulation in next-generation enhanced geothermal systems[J]. Geoenergy Science and Engineering, 2023, 221: 211378.
[6] Liu Z B, Wang C, Zhang M S, et al. Cracking property and brittleness evaluation of granite under high-temperature true triaxial compression in geothermal systems[J]. Geomechanics and Geophysics for Geo-Energy and GeoResources, 2023, 9(1): 99.
[7] Zhang W, Qu Z Q, Guo T K, et al. Study of the enhanced geothermal system (EGS) heat mining from variably fractured hot dry rock under thermal stress[J]. Renewable Energy, 2019, 143: 855-871.
[8] Li P F, Sun Q, Gao Q, et al. Size effect of failure mode of thermally damaged torus granite[J]. International Journal of Rock Mechanics and Mining Sciences, 2023, 163: 105331.
[9] 张洪伟, 万志军, 赵毅鑫, 等. 深层地热储层水力剪切增透机制研究进展[J]. 煤炭学报, 2021, 46(10): 3172-3185.
[10] 许天福, 张延军, 曾昭发, 等. 增强型地热系统(干热岩)开发技术进展[J]. 科技导报, 2012, 30(32): 42-45.
[11] 窦斌, 肖鹏, 郑君, 等. 二氧化碳爆破致裂激发干热岩储层作用效果[J]. 地质科技通报, 2022, 41(5): 150-159.
[12] 曲占庆, 林强, 郭天魁, 等. 顺北油田碳酸盐岩酸蚀裂缝导流能力实验研究[J]. 断块油气田, 2019, 26(4): 533-536.
[13] Zhao K, Wang X Y, Song W J, et al. Evaluation methods and influence factors of heat extraction performance in hot dry rock reservoir under multi-field coupling[J]. Energy Exploration & Exploitation, 2023, 41(4): 1457-1483.
[14] Wang D B, Zhou F J, Dong Y C, et al. Experimental investigation of thermal effect on fracability index of geothermal reservoirs[J]. Natural Resources Research, 2021, 30(1): 273-288.
[15] 张保建, 李燕燕, 高俊, 等. 河北省马头营干热岩的成因机制及其示范意义[J]. 地质学报, 2020, 94(7): 2036-2051.
[16] Singh M, Chaudhuri A. Evaluation of low-to moderateenthalpy shallow sedimentary reservoirs for CCS-CPG systems[M]//Enhanced Geothermal Systems(EGS). London: CRC Press, 2023: 1-16.
[17] 张乐, 胥蕊娜, 姜培学. 花岗岩平滑裂隙内超临界CO2对流换热实验研究[J]. 工程热物理学报, 2016, 37(7): 1500-1505.
[18] Liao J X, Hu K, Mehmood F, et al. Embedded discrete fracture network method for numerical estimation of long-term performance of CO2-EGS under THM coupled framework[J]. Energy, 2023, 285: 128734.
[19] 李静岩, 刘中良, 周宇, 等. CO2羽流地热系统热开采过程热流固耦合模型及数值模拟研究[J]. 化工学报, 2019, 70(1): 72-82.
[20] 石岩, 冯波, 许天福, 等. 二氧化碳羽流地热系统水-岩-气相互作用: 以松辽盆地泉头组为例[J]. 吉林大学学报(地球科学版), 2014, 44(6): 1980-1987.
[21] Singh A, Zoback M, Neupane G, et al. Slip tendency analysis of fracture networks to determine suitability of candidate testbeds for the EGS collab hydroshear experiment[J]. Geothermal Resources Council Transactions, 2019(43): 405-424.
[22] Kang F C, Li Y C, Tang C A, et al. Competition between cooling contraction and fluid overpressure on aperture evolution in a geothermal system[J]. Renewable Energy, 2022, 186: 704-716.
[23] Wang Q Y, Wang D B, Fu W, et al. Effects of saturated fluids on petrophysical properties of hot dry rock at high temperatures: An experimental study[J]. Geothermics, 2024, 121: 103048.
[24] 滕毅. 干热岩水-气注入时渗流特性及采热效率研究[D]. 徐州: 中国矿业大学, 2020.
[25] Meng N, Li T L, Wang J Q, et al. Structural improvement and thermodynamic optimization of a novel supercritical CO 2 cycle driven by hot dry rock for power generation[J]. Energy Conversion and Management, 2021, 235: 114014.
[26] Rohit R V, Vipin Raj R, Kiplangat D C, et al. Tracing the evolution and charting the future of geothermal energy research and development[J]. Renewable and Sustainable Energy Reviews, 2023, 184: 113531.
[27] Xiong F, Zhu C, Feng G, et al. A three-dimensional coupled thermo-hydro model for geothermal development in discrete fracture networks of hot dry rock reservoirs[J]. Gondwana Research, 2023, 122: 331-347.
[28] 王帅, 赵国贞, 刘超. 坚硬顶板下近距离煤层群切顶卸压技术研究[J]. 煤炭工程, 2022, 54(9): 75-80.
[29] 李广林, 郤保平, 崔继明. 不同地应力下水压裂隙扩展演化数值模拟分析[J]. 矿业研究与开发, 2017, 37(10): 86-88.
[30] 郤保平, 赵阳升. 600℃内高温状态花岗岩遇水冷却后力学特性试验研究[J]. 岩石力学与工程学报, 2010, 29(5): 892-898.
[31] 靳佩桦, 胡耀青, 邵继喜, 等. 高温花岗岩遇水冷却后孔隙结构及渗透性研究[J]. 太原理工大学学报, 2019, 50(4): 478-484.
[32] 武晋文, 赵阳升, 万志军, 等. 高温均匀压力花岗岩热破裂声发射特性实验研究[J]. 煤炭学报, 2012, 37(7): 1111-1117.
[33] Meng Q B, Liu J F, Ren L, et al. Experimental study on rock strength and deformation characteristics under triaxial cyclic loading and unloading conditions[J]. Rock Mechanics and Rock Engineering, 2021, 54(2): 777-797.
[34] Wang Y Y, Yu H L, Wu S C, et al. Progress on heat transfer in fractures of hot dry rock enhanced geothermal system[J]. Energy Engineering, 2021, 118(4): 797-823.
[35] 刘汉青, 胡才博, 赵桂萍. 增强地热系统停止运行后温度恢复过程的数值模拟[J]. 中国科学院大学学报, 2024, 41(2): 222-230.
[36] Yang S Q, Tian W L, Elsworth D, et al. An experimental study of effect of high temperature on the permeability evolution and failure response of granite under triaxial compression[J]. Rock Mechanics and Rock Engineering, 2020, 53(10): 4403-4427.
[37] Yang S Q, Ranjith P G, Jing H W, et al. An experimental investigation on thermal damage and failure mechanical behavior of granite after exposure to different high temperature treatments[J]. Geothermics, 2017, 65: 180-197.
[38] Wu X T, Li Y C, Li T J, et al. Hot dry rock preconditioning by two-stage fracturing in excavation-enhanced geothermal system[J]. Geoenergy Science and Engineering, 2023, 229: 212078.
[39] 苏广宁. 煤岩复合体水力压裂裂缝穿层扩展实验研究[J]. 矿业安全与环保, 2024, 51(2): 18-24.
[40] Frash L P, Gutierrez M, Hampton J. True-triaxial apparatus for simulation of hydraulically fractured multiborehole hot dry rock reservoirs[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 70: 496-506.
[41] Yin W T, Zhao Y S, Feng Z J. Experimental research on the permeability of fractured-subsequently-filled granite under high temperature-high pressure and the application to HDR geothermal mining[J]. Renewable Energy, 2020, 153: 499-508.
[42] Wang C Y, Zhang D M, Yu B C, et al. Deformation and seepage characteristics of coal under true triaxial loading-unloading[J]. Rock Mechanics and Rock Engineering, 2023, 56(4): 2673-2695.
[43] Zhang W, Guo T K, Qu Z Q, et al. Research of fracture initiation and propagation in HDR fracturing under thermal stress from meso-damage perspective[J]. Energy, 2019, 178: 508-521.
[44] 许天福, 袁益龙, 姜振蛟, 等. 干热岩资源和增强型地热工程: 国际经验和我国展望[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1139-1152.
[45] Wang K X, Liu Z B, Wu M, et al. Experimental study of mechanical properties of hot dry granite under thermalmechanical couplings[J]. Geothermics, 2024, 119: 102974.
文章导航

/