专题:跨领域人工智能技术

人工智能在心理评估中的研究进展

  • 姚峰 ,
  • 王雪 ,
  • 韦正德 ,
  • 张效初
展开
  • 1. 青少年心理健康与危机智能干预安徽省哲学社会科学重点实验室, 合肥 230601;
    2. 安徽警官职业学院警察系, 合肥 230031;
    3. 中国科学技术大学生命科学与医学部, 合肥 230026
姚峰,教授,研究方向为家庭治疗、人工智能心理等,电子信箱:524980951@qq.com;张效初(通信作者),教授,研究方向为成瘾机制与干预,电子信箱:zxcustc@ustc.edu.cn

收稿日期: 2024-03-28

  修回日期: 2024-09-19

  网络出版日期: 2024-10-21

基金资助

安徽省哲学社会科学重点实验室开放基金重点项目(SYS2023B04);安徽省高等学校科学研究项目重大项目(自然科学类)(2022AH040356)

Research status and prospect of artificial intelligence in psychological assessment

  • YAO Feng ,
  • WANG Xue ,
  • WEI Zhengde ,
  • ZHANG Xiaochu
Expand
  • 1. Key Laboratory of Philosophy and Social Science of Anhui Province on Adolescent Mental Health and Crisis Intelligence Intervention, Hefei Normal University, Hefei 230601, China;
    2. Anhui Vocational College of Police Officers, Hefei 230031, China;
    3. Division of Life Science and Medicine, University of Science & Technology of China, Hefei 230026, China

Received date: 2024-03-28

  Revised date: 2024-09-19

  Online published: 2024-10-21

摘要

综述了人工智能在心理评估中的准确率和方法及伦理问题等应用和研究现进展,基于多模态和心理干预技术的发展,展望了人工智能未来在心理评估中的应用,认为未来的人工智能在心理评估中应用会更加关注个性化需求和跨学科的合作,在信息采集、数据分析、人机互动技术、非侵入式调控技术合作方面应用会更加广泛,未来人工智能的伦理研究会发挥更加重要的作用。

本文引用格式

姚峰 , 王雪 , 韦正德 , 张效初 . 人工智能在心理评估中的研究进展[J]. 科技导报, 2024 , 42(23) : 70 -78 . DOI: 10.3981/j.issn.1000-7857.2024.03.01206

Abstract

In recent years, the rapid development of artificial intelligence has had an important impact on mental health services such as psychological counseling and psychological assessment. In this paper the accuracy and methods of artificial intelligence in psychological assessment as well as ethical issues are reviewed. Based on the development of multi-modal and psychological intervention technology, the future application research of artificial intelligence in psychological assessment is forecast. It is believed that the application of artificial intelligence in psychological assessment in the future will pay more attention to individual needs and interdisciplinary cooperation. It will be more widely used in information collection, data analysis, humancomputer interaction technology, and non-invasive regulatory technology cooperation, and the ethical research of artificial intelligence will play a more important role in the future.

参考文献

[1] 戴晓阳, 蔡太生. 临床心理评估的过去、现在与未来[J]. 中国临床心理学杂志, 2001, 9(3): 237-240.
[2] 张鹏. AI技术在高校学生心理评估中的应用[J]. 中国教育信息化, 2020, 26(10): 90-93.
[3] Luxton D D. An introduction to artificial intelligence in behavioral and mental health care[M]//Artificial Intelligence in Behavioral and Mental Health Care. Amsterdam: Elsevier, 2016: 1-26.
[4] Corcoran C M, Carrillo F, Fernández-Slezak D, et al. Prediction of psychosis across protocols and risk cohorts using automated language analysis[J]. World Psychiatry, 2018, 17(1): 67-75.
[5] Jaiswal S, Valstar M F, Gillott A, et al. Automatic detection of ADHD and ASD from expressive behaviour in RGBD data[C]//Proceedings of 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017). Piscataway, NJ: IEEE, 2017: 1-17.
[6] Kalmady S V, Greiner R, Agrawal R, et al. Towards artificial intelligence in mental health by improving schizophrenia prediction with multiple brain parcellation ensemblelearning[J]. NPJ Schizophrenia, 2019, 5(1): 2.
[7] Ophir Y, Tikochinski R, Asterhan C S C, et al. Deep neural networks detect suicide risk from textual facebook posts[J]. Scientific Reports, 2020, 10(1): 16685.
[8] Mundt J C, Vogel A P, Feltner D E, et al. Vocal acoustic biomarkers of depression severity and treatment response [J]. Biological Psychiatry, 2012, 72(7): 580-587.
[9] Williamson J R, Young D, Nierenberg A A, et al. Tracking depression severity from audio and video based on speech articulatory coordination[J]. Computer Speech & Language, 2019, 55: 40-56.
[10] Zhu Y, Shang Y Y, Shao Z H, et al. Automated depression diagnosis based on deep networks to encode facial appearance and dynamics[J]. IEEE Transactions on Affective Computing, 2018, 9(4): 578-584.
[11] Schultebraucks K, Yadav V, Shalev A Y, et al. Deep learning-based classification of posttraumatic stress disorder and depression following trauma utilizing visual and auditory markers of arousal and mood[J]. Psychological Medicine, 2022, 52(5): 957-967.
[12] Jollans L, Whelan R. Neuromarkers for mental disorders: Harnessing population neuroscience[J]. Frontiers in Psychiatry, 2018, 9: 242.
[13] Luijten M, Schellekens A F, Kühn S, et al. Disruption of reward processing in addiction: An image-based metaanalysis of functional magnetic resonance imaging studies[J]. JAMA Psychiatry, 2017, 74(4): 387-398.
[14] Crossley N A, Mechelli A, Ginestet C, et al. Altered hub functioning and compensatory activations in the connectome: A meta-analysis of functional neuroimaging studies in schizophrenia[J]. Schizophrenia Bulletin, 2016, 42(2): 434-442.
[15] Brühl A B, Delsignore A, Komossa K, et al. Neuroimaging in social anxiety disorder: A meta-analytic review resulting in a new neurofunctional model[J]. Neuroscience and Biobehavioral Reviews, 2014, 47: 260-280.
[16] Plichta M M, Scheres A. Ventral – striatal responsiveness during reward anticipation in ADHD and its relation to trait impulsivity in the healthy population: A meta-analytic review of the fMRI literature[J]. Neuroscience & Biobehavioral Reviews, 2014, 38: 125-134.
[17] Bologna M, Merola A, Ricciardi L. Editorial: Innovative technologies and clinical applications for invasive and non-invasive neuromodulation: From the workbench to the bedside[J]. Frontiers in Neurology, 2019, 10: 1350.
[18] Polanía R, Nitsche M A, Ruff C C. Studying and modifying brain function with non-invasive brain stimulation [J]. Nature Neuroscience, 2018, 21(2): 174-187.
[19] Lysenko S. Influence of speed information transfer on safety of society[J]. International Journal of Recent Technology and Engineering, 2019, 8(4S): 103-109.
[20] 朱孟垚, 李兴华. ChatGPT安全威胁研究[J]. 信息安全研究, 2023, 9(6): 533-542.
[21] 李伟, 孔祥瑜. 人类文明新形态视域下人工智能发展的伦理底线与进路[J]. 宁夏社会科学, 2023(2): 33-39.
[22] 2016第九届数学中国数学建模网络挑战赛[EB/OL]. (2016-05-24)[2024-03-01]. http://www.tzm cm.cn.
[23] 王璐, 朱家明, 刘佩麟, 等. 基于Logistic回归青少年心理的风险评估及预警研究[J]. 齐齐哈尔大学学报(自然科学版), 2017, 33(2): 77-83.
[24] 刘嘉. 多元教育评价助力创新人才培养[J]. 人民教育, 2020(21): 22-29.
[25] 胡传鹏, 王非, 过继成思, 等. 心理学研究中的可重复性问题: 从危机到契机[J]. 心理科学进展, 2016, 24(9): 1504-1518.
[26] 吴凡, 顾全, 施壮华, 等. 跳出传统假设检验方法的陷阱: 贝叶斯因子在心理学研究领域的应用[J]. 应用心理学, 2018, 24(3): 195-202.
[27] 周吉帆, 徐昊骙, 唐宁, 等.“强认知”的心理学研究: 来自AlphaGo的启示[J]. 应用心理学, 2016, 22(1): 3- 11.
[28] 余嘉元, 田金亭, 朱强忠. 计算智能在心理学中的应用[J]. 山东大学学报(工学版), 2009, 39(1): 1-5.
[29] 王一溢, 占继尔, 陈泽龙, 等. 机器学习在心理测量中的应用[J]. 电脑知识与技术, 2021, 17(3): 204-206.
[30] 田玮, 朱廷劭. 基于深度学习的微博用户自杀风险预测[J]. 中国科学院大学学报, 2018, 35(1): 131-136.
[31] 赵靓. 基于微博和网购行为的用户心理压力感知[D]. 北京: 清华大学, 2016.
[32] Zhao N, Zhang Z, Wang Y M, et al. See your mental state from your walk: Recognizing anxiety and depression through kinect-recorded gait data[J]. PLoS One, 2019, 14(5): e0216591.
[33] Gao Z K, Li Y L, Yang Y X, et al. A GPSO-optimized convolutional neural networks for EEG-based emotion recognition[J]. Neurocomputing, 2020, 380: 225-235.
[34] 尚铭悦. 数据驱动的心理测评量表优化方法研究与应用[D]. 济南: 济南大学, 2022.
[35] 李刚, 陈洁. 基于数据驱动的高校学生心理健康评估研究[J]. 微型电脑应用, 2022, 38(11): 163-166.
[36] 卢艺, 崔中良. 中国人工智能伦理研究进展[J]. 科技导报, 2022, 40(18): 69-78.
[37] 国务院关于印发新一代人工智能发展规划的通知[J]. 中华人民共和国国务院公报, 2017(22): 7-21.
[38] 王远旭, 汤一鸣. 医疗人工智能伦理: 问题·原因·对策[J]. 武汉冶金管理干部学院学报, 2023, 33(1): 25-28.
[39] 张钹, 朱军, 苏航. 迈向第三代人工智能[J]. 中国科学(信息科学), 2020, 50(9): 1281-1302.
[40] 任萍, 汪悦, 刘冬予, 等. 心理健康评估与干预的智能化应用[J]. 北京师范大学学报(社会科学版), 2022(4): 150-160.
[41] 王从余, 彭凯平. 智能社会的心理影响与研究展望[J]. 海南大学学报(人文社会科学版), 2024, 42(1): 76-82.
[42] 姚峰. 当代中国家庭问题和家庭复原力分析: 以家庭伦理为考察脉络[J]. 九江学院学报(社会科学版), 2017, 36(4): 76-82.
[43] Millings A, Morris J, Rowe A, et al. Can the effectiveness of an online stress management program be augmented by wearable sensor technology?[J]. Internet Interventions, 2015, 2(3): 330-339.
[44] 时晔. 人工智能在5G通信领域上的发展探究[J]. 电子测试, 2021(8): 131-132.
[45] 申文韬. 5G通信技术与人工智能技术融合发展的基本现状与演化趋势[J]. 计算机产品与流通, 2020(7): 38.
[46] 佟志勇. 人工智能技术在5G网络中的应用[J]. 无线互联科技, 2021, 18(4): 1-2.
[47] 姚峰. 生命历程理论视角下青少年越轨行为成因与防控的质性研究[J]. 中国监狱学刊, 2024, 39(2): 59-66.
[48] 史梦璐. 当事人对“AI”心理咨询的知觉和体验研究[D]. 武汉: 华中师范大学,2018.
[49] Cook J E, Doyle C. Working alliance in online therapy as compared to face-to-face therapy: Preliminary results [J]. Cyberpsychology & Behavior, 2002, 5(2): 95-105.
[50] 宗阳, 王广新. 拟人化: 人机交互中的心理学应用[J]. 心理技术与应用, 2016, 4(5): 296-305.
[51] de Graaf M M A, Ben Allouch S, Klamer T. Sharing a life with Harvey: Exploring the acceptance of and relationship-building with a social robot[J]. Computers in Human Behavior, 2015, 43: 1-14.
[52] Sampson R J, Laub J H. Crime in the making: Pathways and turning points through life[J]. Choice Reviews Online, 1993, 31(3): 430.
[53] Sampson R J, Laub J H. Crime and deviance in the life course[J]. Annual Review of Sociology, 1992, 18: 63-84.
[54] Temel Y, Hescham S A, Jahanshahi A, et al. Neuromodulation in psychiatric disorders[J]. International Review of Neurobiology, 2012, 107: 283-314.
[55] Read J, Bentall R. The effectiveness of electroconvulsive therapy: A literature review[J]. Epidemiology and Psychiatric Sciences, 2010, 19(4): 333-347.
[56] Baghai T C, Möller H J. Electroconvulsive therapy and its different indications[J]. Dialogues in Clinical Neuroscience, 2008, 10(1): 105-117.
[57] Sahlem G L, Short E B, Kerns S, et al. Expanded safety and efficacy data for a new method of performing electroconvulsive therapy: Focal electrically administered seizure therapy[J]. The Journal of ECT, 2016, 32(3): 197- 203.
[58] Magnezi R, Aminov E, Shmuel D, et al. Comparison between neurostimulation techniques repetitive transcranial magnetic stimulation vs electroconvulsive therapy for the treatment of resistant depression: Patient preference and cost-effectiveness[J]. Patient Preference and Adherence, 2016, 10: 1481-1487.
[59] Hallett M. Transcranial magnetic stimulation: A primer [J]. Neuron, 2007, 55(2): 187-199.
[60] Taylor S F, Bhati M T, Dubin M J, et al. A naturalistic, multi-site study of repetitive transcranial magnetic stimulation therapy for depression[J]. Journal of Affective Disorders, 2017, 208: 284-290.
[61] Dunner D L, Aaronson S T, Sackeim H A, et al. A multisite, naturalistic, observational study of transcranial magnetic stimulation for patients with pharmacoresistant major depressive disorder: Durability of benefit over a 1- year follow-up period[J]. The Journal of Clinical Psychiatry, 2014, 75(12): 1394-1401.
[62] 康克. 经颅磁刺激机器人靶点自动定位及跟踪方法研究[D]. 北京: 北京石油化工学院, 2023.
[63] 唐睿, 宋洪文, 孔卓, 等. 经颅直流电刺激治疗常见神经精神疾病的临床应用专家共识[J]. 中华精神科杂志, 2022, 55(5): 327-382.
[64] Tavakoli A V, Yun K. Transcranial alternating current stimulation (tACS) mechanisms and protocols[J]. Frontiers in Cellular Neuroscience, 2017, 11: 214.
[65] 唐代兴. 善抑或恶: 人工智能的根本伦理问题[J]. 人文杂志, 2022(6): 76-87.
[66] 姜力铭, 田雪涛, 任萍, 等. 人工智能辅助下的心理健康新型测评[J]. 心理科学进展, 2022(1): 157-167.
[67] Kern M L, Park G, Eichstaedt J C, et al. Gaining insights from social media language: Methodologies and challenges[J]. Psychological Methods, 2016, 21(4): 507- 525.
[68] Berman J J. Principles of big data: Preparing, sharing, and analyzing complex information[M]. Boston: Morgan Kaufmann, 2013.
[69] Harari G M, Vaid S S, Müller S R, et al. Personality sensing for theory development and assessment in the digital age[J]. European Journal of Personality, 2020, 34(5): 649-669.
[70] 叶丽频, 陈旻. 心理干预研究的伦理问题与应对[J]. 医学与哲学, 2019, 40(10): 28-31.
[71] 王萍萍. 人工智能时代机器人的伦理关怀探析: 以《老子》“善”论为视角[J]. 自然辩证法研究, 2021, 37(5): 54-59.
[72] 许浩, 程卿玄, 董晶, 等. 人智交互情境下的未成年人个人信息保护: 困境与出路[J/OL]. 情报理论与实践, 1-12. [2024-07-20]. http://kns. cnki. net/kcms/detail/11. 1762.G3.20240220.1600.004.html.
文章导航

/