中国“一带一路”沿线区域物流业碳排放驱动因素及达峰预测研究
1. 河北地质大学管理学院,石家庄 050031
2. 河北省矿产资源战略与管理研究基地,石家庄 050031
3. 河北体育学院社会体育系,石家庄 050031
徐超飞(通信作者),硕士研究生,研究方向为低碳物流,电子信箱:xuchaofei_99@163.com
收稿日期: 2024-06-17
修回日期: 2024-08-12
网络出版日期: 2024-10-30
基金资助
教育部人文社会科学研究青年基金项目(21YJC630072);
河北省高等学校人文社会科学研究青年拔尖人才项目(BJS2023003);
河北地质大学博士科研启动基金项目(BQ2024087);
河北省矿产资源战略与管理研究基地科研项目(KCGL202406)
Driving factors and peak prediction of carbon emissions in the provincial logistics industry along China’s Belt and Road
1. School of Management Hebei GEO University, Shijiazhuang 050031, China
2. Hebei Province Mineral Resources Strategy and Management Research Base, Shijiazhuang 050031, China
3. Department of Social Sports Hebei University of Physical Education, Shijiazhuang 050031, China
Received date: 2024-06-17
Revised date: 2024-08-12
Online published: 2024-10-30
首先运用碳排放系数法测算2006—2021年“一带一路”沿线区域物流业碳排放量;接着采用广义迪氏指数法对其驱动因素进行分解;最后结合蒙特卡罗模拟并设立3种情景,对2022—2035年物流业碳排放进行预测,旨在研究未来实现碳达峰情景及有效达峰路径。结果表明:(1)固定资产与物流业增加值对碳排放促增效果显著,投资碳强度和产出碳强度促降效果显著;(2)东北和西北地区在政府干预情景下可实现2030年碳达峰,“一带一路”沿线整体只有在技术突破情景下可实现碳达峰目标。基于此,要充分发挥政策干预和技术创新突破双重作用,早日实现碳达峰目标。
梁毅, 徐超飞, 高子涵, 储兆钰 . 中国“一带一路”沿线区域物流业碳排放驱动因素及达峰预测研究[J]. 科技导报, 0 : 1 . DOI: 10.3981/j.issn.1000-7857.2024.06.00710
To support the logistics industry’s sustainable growth, it is essential to identify the driving forces and the peak path of carbon emissions in the province’s logistics industry along the Belt and Road. Firstly, this paper uses the carbon emission coefficient method to calculate the carbon emissions of the provincial logistics industry along the Belt and Road from 2006 to 2021. Then, the generalized Divisia index method is used to decompose the driving factors of carbon emissions. Finally, combined with Monte Carlo simulation, three scenarios are set up to predict the carbon emissions of the logistics industry from 2022 to 2035, aiming to study the future carbon peak scenario and effective carbon peak path of the logistics industry along the Belt and Road. The results show that: (1) Among the factors that promote the increase of carbon emission, the effect of fixed asset investment and the added value of the logistics industry is significant. Among the factors that promote carbon emission reduction, investment carbon intensity and output carbon intensity have significant effects. (2) The northeast and northwest regions can achieve the 2030 carbon peak target under the government intervention scenario, and the Belt and Road can only achieve the carbon peak target under the technology breakthrough scenario. This means that to reach the carbon peak as quickly as possible, we should fully embrace both the functions of governmental intervention and technology innovation breakthrough.
[1] 任国强, 赵翠明. 碳源视角下中国物流业碳排放地区差距及变动[J]. 环境科学与技术, 2021, 44(3): 191-199.
[2] 刘琦, 范鑫坤. 中国省际物流业碳排放的空间效应及其传导机制[J]. 环境工程学报, 2024, 18(1): 298-308.
[3] 张立国. 中国物流业二氧化碳排放变化驱动因素分析[J]. 中国流通经济, 2016, 30(12): 29-39.
[4] 穆晓央, 王力, 徐蓉, 等. 西部省域物流业碳排放脱钩及影响因素研究[J]. 环境科学与技术, 2020, 43(4):214-219.
[5] 陈亮, 王金泓, 何涛, 等. 基于SVR的区域交通碳排放预测研究[J]. 交通运输系统工程与信息, 2018, 18(2): 13-19.
[6] 朱长征, 杨莎, 刘鹏博, 等. 中国交通运输业碳达峰时间预测研究[J]. 交通运输系统工程与信息, 2022, 22(6): 291-299.
[7] Zhang L X, Li Z W, Jia X P, et al. Targeting carbon emissions mitigation in the transport sector–A case study in Urumqi, China[J]. Journal of Cleaner Production, 2020, 259: 120811.
[8] Quan C G, Cheng X J, Yu S S, et al. Analysis on the influencing factors of carbon emission in China’s logistics industry based on LMDI method[J]. The Science of the Total Environment, 2020, 734: 138473.
[9] Dai Y, Gao H O. Energy consumption in China’s logistics industry: A decomposition analysis using the LMDI approach[J]. Transportation Research Part D: Transport and Environment, 2016, 46: 69-80.
[10] Isik M, Sarica K, Ari I. Driving forces of Turkey’s transportation sector CO2 emissions: An LMDI approach[J]. Transport Policy, 2020, 97: 210-219.
[11] 包耀东, 李晏墅, 张世忠. 长三角区域物流业碳排放规模及其影响因素研究[J]. 生态经济, 2020, 36(11): 25-31.
[12] Liu M Z, Zhang X X, Zhang M Y, et al. Influencing factors of carbon emissions in transportation industry based on CD function and LMDI decomposition model: China as an example[J]. Environmental Impact Assessment Review, 2021, 90: 106623.
[13] Vaninsky A. Factorial decomposition of CO2 emissions: A generalized Divisia index approach[J]. Energy Economics, 2014, 45: 389-400.
[14] 王勇, 韩舒婉, 李嘉源, 等. 五大交通运输方式碳达峰的经验分解与情景预测: 以东北三省为例[J]. 资源科学, 2019, 41(10): 1824-1836.
[15] Zhang C Y, Zhang W Y, Luo W N, et al. Analysis of influencing factors of carbon emissions in China’s logistics industry: A GDIM-based indicator decomposition[J]. Energies, 2021, 14(18): 5742.
[16] 刘慧甜, 胡大伟. 基于机器学习的交通碳排放预测模型构建与分析[J]. 环境科学, 2024, 45(6): 3421-3432.
[17] Xing J R, Zhu J L, Liu Y X. Scenario prediction of carbon peaking in China’s logistics industry based on SVR[J]. Highlights in Science, Engineering and Technology, 2023, 47: 260-266.
[18] 李宁海, 陈硕, 梁肖, 等. 我国交通运输业碳达峰时间预测[J]. 交通运输系统工程与信息, 2024, 24(1): 2-13, 54.
[19] 张晔, 宋国华, 尹航, 等. 综合交通运输系统碳排放预测的不确定性分析[J]. 交通运输工程与信息学报, 2023, 21(1): 64-79.
[20] Zhang P X, Li S S. Driving factors and scenario prediction of carbon emission from transport sector in the Yangtze River Basin of China[J]. Frontiers in Ecology and Evolution, 2023, 11: 1283605.
[21] 国务院办公厅. 国家发展改革委、外交部、商务部发布《推动共建丝绸之路经济带和21世纪海上丝绸之路的愿景与行动》通知[EB/OL]. (2015-03-28)[2024-05-28]. https://www.gov.cn/xinwen/2015-03/28/content_2839723.htm.
[22] 国家发改委能源研究所. 中国省级温室气体清单编制指南[EB/OL]. [2024-05-31]. https://wenku.baidu.com/view/7ae95325f111f18583d05a67.html.
[23] 生态环境部办公厅. 关于做好2022年企业温室气体排放报告管理相关重点工作的通知[R/OL]. (2022-03-15)[2024-05-31]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202203/t20220315_971468.html
[24] Kaya Y. Impact of carbon dioxide emission control on GNP growth: Interpretation of proposed scenarios[R].Paris: IPCC Energy and Industry Subgroup, 1989.
[25] 国务院办公厅. 国务院关于印发“十四五”现代物流发展规划的通知[EB/OL]. (2022-05-17)[2024-05-28]. https://www.gov.cn/zhengce/content/2022-12/15/content_5732092.htm.
[26] Chen J D, Xu C, Shahbaz M, et al. Interaction determinants and projections of China’s energy consumption: 1997–2030[J]. Applied Energy, 2021, 283: 116345.
[27] 邵帅, 张曦, 赵兴荣. 中国制造业碳排放的经验分解与达峰路径: 广义迪氏指数分解和动态情景分析[J]. 中国工业经济, 2017(3): 44-63.
[28] Rahman M M, Sultana N, Velayutham E. Renewable energy, energy intensity and carbon reduction: Experience of large emerging economies[J]. Renewable Energy, 2022, 184: 252-265.
[29] Andersson F N G, Karpestam P. CO2 emissions and economic activity: Short- and long-Run economic determinants of scale, energy intensity and carbon intensity[J]. Energy Policy, 2013, 61: 1285-1294.
[30] Ramírez A, de Keizer C, Van der Sluijs J P, et al. Monte Carlo analysis of uncertainties in the Netherlands greenhouse gas emission inventory for 1990–2004[J]. Atmospheric Environment, 2008, 42(35): 8263-8272.
[31] Jiang R, Li R R. Decomposition and decoupling analysis of life-cycle carbon emission in China’s building sector[J]. Sustainability, 2017, 9(5): 793.
[32] 李善同, 侯永志, 刘云中, 等. 中国经济增长潜力与经济增长前景分析[J]. 管理世界, 2005(9): 7-19.
[33] 林伯强, 刘希颖. 中国城市化阶段的碳排放: 影响因素和减排策略[J]. 经济研究, 2010, 45(8): 66-78.
[34] 国务院办公厅. 国务院关于印发“十四五”节能减排综合工作方案的通知[EB/OL]. (2021-12-28)[2024-05-28]. https://www.gov.cn/gongbao/content/2022/content_5674299.htm.
/
〈 |
|
〉 |