国家高新区开放创新水平的空间差距与动态转移——基于2015—2020年147家国家高新区实证研究

展开
  • 1. 中国标准化研究院国家标准馆,北京100191
    2. 标新科技(北京)有限公司,北京100191
孙红军,副研究员,研究方向为创新标准、科技创新,电子信箱:sunhj@cnis.ac.cn
黄菊秀(通信作者),助理研究员,研究方向为开放创新,电子信箱:huangjx@cnis.ac.cn

收稿日期: 2024-06-17

  修回日期: 2024-09-29

  网络出版日期: 2024-11-21

基金资助

中国标准化研究院基本科研业务费项目(252024Y-11459);

中国科学院文献情报中心 2023年 NSTL专项任务子课题(252024Z11960)

Spatial gap and dynamic transfer of the level of open innovation innational high-tech Zones: Based on an empirical study of 147national high-tech zones from 2015 to 2020

Expand
  • 1. China National Institute of Standardization , Beijing 100191, China
    2. Biaoxin Technology (Beijing) Co., LTD, Beijing 100191, China

Received date: 2024-06-17

  Revised date: 2024-09-29

  Online published: 2024-11-21

摘要

分析国家高新区开放创新水平的空间差距与动态转移特征,对提升国家高新区开放创新水平和推动区域协同发展具有重要理论和现实意义。基于8大地区视角依次采用主成分分析方法、Dagum基尼系数及其分解方法、传统和空间Markov链估计方法实证研究了2015—2020年,147家国家高新区开放创新水平的时空分异与动态转移特征。研究发现,(1)世界一流高科技园区开放创新水平高于创新型科技园区,创新型科技园区好于创新型特色园区。开放创新水平与园区所在城市行政级别和人口规模高度相关。(2)8大地区国家高新区开放创新水平的整体区域内差距呈现扩大态势,南部沿海、北部沿海及东部沿海国家高新区开放创新水平的区域内差距最大,大西北国家高新区区域内差距最小。(3)8大地区国家高新区开放创新水平的区域间差距均呈现出了扩大态势,其区域间差距增速存在明显的区域异质性,区域间差距逐步成为区域差距的主要来源。(4)在不考虑空间关联效应情况下,其空间转移特征表现出“非对称向上”“俱乐部趋同”“阶段性差异”等态势。在不同地理领域环境下,其转移特征呈现出显著空间依赖性。

本文引用格式

孙红军, 黄菊秀, 杜洋 . 国家高新区开放创新水平的空间差距与动态转移——基于2015—2020年147家国家高新区实证研究[J]. 科技导报, 0 : 1 . DOI: 10.3981/j.issn.1000-7857.2024.06.00717

Abstract

The aim is to analyze the spatial gap and dynamic transfer characteristics of the opening and innovation level ofnational high-tech zones, which has important theoretical and practical significance for improving the opening and innovationlevel of national high-tech zones and promoting regional coordinated development. From the perspective of eight regions,principal component analysis method, Dagum Gini coefficient and its decomposition method, traditional and spatial Markov chainestimation method are used to empirically study the spatio-temporal differentiation and dynamic transfer characteristics of theopen innovation level of 147 national high-tech zones from 2015 to 2020. The findings are as follows: (1) the opening andinnovation level of world-class high-tech parks is better than that of innovative science and technology parks, and innovativescience and technology parks are better than innovative characteristic parks. The level of open innovation is highly correlatedwith the administrative level and population size of the city where the park is located. (2) The overall intra-regional gap in theopening and innovation level of national high-tech zones in the eight regions shows a widening trend. The intra-regional gap inthe opening and innovation level of national high-tech zones in the southern coastal, northern coastal and eastern coastalcountries is the largest, while the intra-regional gap in the Great Northwest national high-tech zones is the smallest. (3) Theinter-regional gap in the opening and innovation level of national high-tech zones in the eight regions showed a widening trend,and the growth rate of the inter-regional gap showed obvious regional heterogeneity, and the inter-regional gap gradually becamethe main source of regional gap. (4) Without considering the spatial correlation effect, its spatial transfer characteristics show thetrend of "asymmetric upward", "club convergence" and "stage difference". In different geographical environments, the transfercharacteristics show significant spatial dependence.

参考文献

[1] 科技部火炬中心.2020 年国家高新区综合发展与数据分析报告(一)[J]. 中国科技产业, 2021(12): 16-27.

[2] 科技部火炬中心.2020年国家高新区综合发展与数据分析报告(二)[J].中国科技产业, 2022(1): 46-59.

[3] Laitinen E K. A dynamic performance measurement system: Evidence from small Finnish technology companies[J]. Scandinavian Journal of Management, 2002, 18(1):65-99.

[4] Hagedoorn J, Cloodt M. Measuring innovative performance: Is there an advantage in using multiple indicators?[J]. Research Policy, 2003, 32(8): 1365-1379.

[5] Sun C C. A performance evaluation model by integratingfuzzy AHP and fuzzy TOPSIS methods[J]. Expert Systemswith Applications, 2010, 37(12): 7745-7754.

[6] 匡海波, 刘天寿, 刘家国, 等 . 基于 PCA-TOPSIS 的自贸区开放水平测度研究[J]. 科研管理, 2018, 39(3): 69-79.

[7] 王必达, 赵城. 黄河上游区域向西开放的模式创新:“三重开放”同时启动与推进[J]. 中国软科学, 2020(9): 70-83.

[8] 朱承亮 . 中国地区经济差距的演变轨迹与来源分解[J].数量经济技术经济研究, 2014, 31(6): 36-54.

[9] 陈明华, 刘华军, 孙亚男 . 中国五大城市群金融发展的空间差异及分布动态: 2003—2013年[J]. 数量经济技术经济研究, 2016, 33(7): 130-144.

[10] Dagum C. A new approach to the decomposition of the Gini income inequality ratio[J]. Empirical Economics,1997, 22(4): 515-531.

[11] 杨明海, 张红霞, 孙亚男, 等 . 中国八大综合经济区科技创新能力的区域差距及其影响因素研究[J]. 数量经济技术经济研究, 2018, 35(4): 3-19.

[12] 毛其淋, 盛斌 . 对外经济开放、区域市场整合与全要素生产率[J]. 经济学, 2012, 12(1): 181-210.

[13] 邓力平, 陈丽 . 推进高水平对外开放中的税收新发展:基于共建“一带一路”十周年经验的思考[J]. 国际税收, 2023(10): 3-10.

[14] 王德蓉 . 以高水平对外开放拓展中国式现代化发展空间的实现路径[J]. 经济社会体制比较, 2023(6): 1-9.

文章导航

/