污染物环境过程净化与自净城市
收稿日期: 2024-07-29
修回日期: 2024-11-18
网络出版日期: 2024-12-06
基金资助
国家自然科学基金基础科学中心项目(22188102);中国工程院战略研究与咨询项目(2023-JB-05-11)
Pollutants purification in environmental processes and self-purifying city#br#
Received date: 2024-07-29
Revised date: 2024-11-18
Online published: 2024-12-06
单文坡, 马金珠, 楚碧武, 徐耀阳, 蔡超, 陈青林, 张召基, 卢新, 贺泓 . 污染物环境过程净化与自净城市[J]. 科技导报, 0 : 1 . DOI: 10.3981/j.issn.1000-7857.2024.11.01613
[1] Galloway J N, Townsend A R, Erisman J W, et al. Transformation of the nitrogen cycle: Recent trends, questions,and potential solutions[J]. Science, 2008, 320(5878): 889-892.
[2] Tian H Q, Xu R T, Canadell J G, et al. A comprehensive quantification of global nitrous oxide sources and sinks[J].Nature, 2020, 586(7828): 248-256.
[3] Shan Y L, Du J P, Zhang Y, et al. Selective catalytic reduction of NOx with NH3: Opportunities and challenges of Cu-based small-pore zeolites[J]. National Science Re⁃view, 2021, 8(10): nwab010.
[4] Chen W B, Zou R Q, Wang X D. Toward an atomic-level understanding of the catalytic mechanism of selective catalytic reduction of NOx with NH3[J]. ACS Catalysis, 2022,12(22): 14347-14375.
[5] Jiang Y Q, Ding D, Dong Z X, et al. Extreme emission reduction requirements for China to achieve World Health Organization global air quality guidelines[J]. Environmental Science & Technology, 2023, 57(11): 4424-4433.
[6] Zhao B, Wang S X, Hao J M. Challenges and perspectives of air pollution control in China[J]. Frontiers of Environmental Science & Engineering, 2024, 18(6): 68.
[7] Qu J H, Chen J P. Pathways toward a pollution-free planet and challenges[J]. Frontiers of Environmental Science& Engineering, 2024, 18(6): 67.
[8] 马金珠, 楚碧武, 马庆鑫, 等 .“环境催化城市”:概念提出和研究展望[J]. 化学进展, 2024, 36(4): 466-470.
[9] Ma J Z, Chen Y F, He G Z, et al. A robust H-transfer redox mechanism determines the high-efficiency catalytic performance of layered double hydroxides[J]. Applied Catalysis B: Environmental, 2021, 285: 119806.
[10] Wang Z S, Li X T, Ma J Z, et al. Effect of interlayer anions on NiFe layered double hydroxides for catalytic ozone decomposition[J]. Environmental Science & Technology, 2024, 58(19): 8597-8606.
[11] Xie S Y, He Z M, Wang Y Z, et al. Ambient atmospheric application and influencing factors of ozone catalytic decomposition materials in a channel test[J]. Atmospheric Environment, 2024, 321: 120346.
[12] Zhang Z L, He G Z, Li Y B, et al. Effect of hydroxyl groups on metal anchoring and formaldehyde oxidation performance of Pt/Al2O3[J]. Environmental Science &Technology, 2022, 56(15): 10916-10924.
[13] Ma J Z, He H, Liu F D. Effect of Fe on the photocatalytic removal of NOx over visible light responsive Fe/TiO2 catalysts[J]. Applied Catalysis B: Environmental,2015, 179: 21-28.
[14] Ma J Z, Wang C X, He H. Enhanced photocatalytic oxidation of NO over g-C3N4-TiO2 under UV and visible light[J]. Applied Catalysis B: Environmental, 2016, 184:28-34.
[15] Chen M, Ma J Z, Zhang B, et al. Remarkable synergistic effect between{001}facets and surface F ions promoting hole migration on anatase TiO2[J]. Applied Catalysis B:Environmental, 2017, 207: 397-403.
[16] Pascual U, Balvanera P, Anderson C B, et al. Diverse values of nature for sustainability[J]. Nature, 2023, 620(7975): 813-823.
[17] Crooks S, Sutton-Grier A E, Troxler T G, et al. Coastal wetland management as a contribution to the US National Greenhouse Gas Inventory[J]. Nature Climate Change,2018, 8(12): 1109-1112.
[18] Cheng F Y, Van Meter K J, Byrnes D K, et al. Maximizing US nitrate removal through wetland protection and restoration[J]. Nature, 2020, 588(7839): 625-630.
[19] Bahram M, Espenberg M, Pärn J, et al. Structure and function of the soil microbiome underlying N2O emissions from global wetlands[J]. Nature Communications,2022, 13(1): 1430.
[20] Pillay R. Humans pressure wetland multifunctionality[J].Nature Ecology & Evolution, 2022, 6(9): 1250-1251.
[21] Hansen A T, Dolph C L, Foufoula-Georgiou E, et al. Contribution of wetlands to nitrate removal at the water⁃shed scale[J]. Nature Geoscience, 2018, 11: 127-132.
[22] Tufail M A, Iltaf J, Zaheer T, et al. Recent advances in bioremediation of heavy metals and persistent organic pollutants: A review[J]. Science of the Total Environment, 2022, 850: 157961.
[23] Sales da Silva I G, Gomes de Almeida F C, Padilha da Rocha e Silva N M, et al. Soil bioremediation: Overview of technologies and trends[J]. Energies, 2020, 13(18):4664.
/
〈 |
|
〉 |