基因治疗浪潮下中国血友病治疗的范式转移与启示

展开
  • 北京大学医学图书馆,北京 100191
张巍巍,馆员,研究方向为生物医学信息分析,电子信箱:zhangww@bjmu.edu.cn
管同(通信作者),副研究官员,研究方向为生物医学信息分析,电子信箱:guanton@bjmu.edu.cn

收稿日期: 2024-01-26

  修回日期: 2024-11-10

  网络出版日期: 2024-12-13

Paradigm shift of hemophilia treatment in China under the wave of gene therapy

Expand
  • Peking University Medical Library, Beijing 100191, China

Received date: 2024-01-26

  Revised date: 2024-11-10

  Online published: 2024-12-13

摘要

从美国、欧洲和中国药监部门、临床试验注册数据库以及文献中挖掘全球血友病基因治疗的研发管线以及国内外上市非基因治疗药物相关信息。从安全性和有效性、抗体风险、可负担性与可及性3个角度对比基因治疗与非基因治疗,综合分析当前国际形式下中国血友病治疗范式的转移方向。研究发现,中国血友病治疗将从依赖血源性凝血因子和标准半衰期凝血因子,逐步转换为长效凝血因子进行预防治疗、非因子替代疗法进行中和抗体治疗的复合模式,随着研究的深入,基因治疗也会成为中国血友病治疗的选择之一。在治疗范式转移过程中,中国应在基础与临床研究、临床应用及监管政策等方面做好准备。

本文引用格式

张巍巍, 管同 . 基因治疗浪潮下中国血友病治疗的范式转移与启示[J]. 科技导报, 0 : 1 . DOI: 10.3981/j.issn.1000-7857.2024.01.00057

Abstract

An intelligence analysis was conducted to determine the paradigm shift of hemophilia treatment in China. Research pipeline of global gene therapies and other marketed treatments in US, European Union and China were investigated. The results revealed that the therapeutic landscape for hemophilia in China would undergone a significant transformation. The traditional reliance on plasma-derived clotting factors and recombinant coagulation factors with standard half-life would be progressively shifted to a composite model, i. e., adoption of extended half-life factors for prophylactic therapy and non-factor replacement therapies for neutralizing antibody. With the advancement of research, gene therapy would also become one of the therapeutic options. During the process of paradigm shifting, China should be prepared in terms of strengthening basic and clinical research initiatives, refining clinical application strategies, and establishing robust regulatory frameworks to ensure the efficacy and safety of these evolving treatment options.

参考文献

[1] National Academies of Sciences E. Human genome editing: Science, ethics, and governance[M]. Washington, DC:The National Academies Press, 2017.

[2] Vokinger K N, Glaus C E G, Kesselheim A S. Approval and therapeutic value of gene therapies in the US and Eu⁃rope[J]. Gene Therapy, 2023, 30(10-11): 756-760.

[3]. Gene therapy needs a long-term approach[J]. Nature Medicine, 2021, 27(4): 563.

[4] Samelson-Jones B J, Finn J D, George L A, et al. Hyperactivity of factor IX Padua (R338L) depends on factor VIIIa cofactor activity[J]. JCI Insight, 2019, 5(14): 128683.

[5] Pipe S W, Arruda V R, Lange C, et al. Characteristics of BAY 2599023 in the current treatment landscape of hemophilia A gene therapy[J]. Current Gene Therapy, 2023,23(2): 81-95.

[6] Peyvandi F, Garagiola I, Young G. The past and future of haemophilia: Diagnosis, treatments, and its complications[J]. The Lancet, 2016, 388(10040): 187-197.

[7] Mancuso M E, Santagostino E. Outcome of clinical trials with new extended half-life FVIII/IX concentrates[J]. Journal of Clinical Medicine, 2017, 6(4): 39.

[8] Keam S J. Efanesoctocog Alfa: First approval[J]. Drugs,2023, 83(7): 633-638.

[9] Malec L M, Witmer C M, Jaffray J, et al. Real world use of extended half-life products and the impact on bleeding events and joint health in the United States[J]. Blood,2018, 132(Supplement 1): 1195.

[10] Chhabra A, Spurden D, Fogarty P F, et al. Real-world outcomes associated with standard half-life and extended half-life factor replacement products for treatment of haemophilia A and B[J]. Blood Coagulation and Fibrinolysis, 2020, 31(3): 186-192.

[11] Persson S, Berndt C, Engstrand S, et al. Area under the curve: Comparing the value of factor VIII replacement therapies in haemophilia A[J]. Haemophilia, 2023, 29(1): 145-155.

[12] Barg A A, Budnik I, Avishai E, et al. Emicizumab prophylaxis: Prospective longitudinal real-world follow-up and monitoring[J]. Haemophilia, 2021, 27(3): 383-391.

[13] Xu Y, Wang Y, Wu R H, et al. Emicizumab prophylaxis for the treatment of Chinese hemophilia A patients in the real world: A multi-center retrospective analysis[J].Blood, 2023, 142: 2624.

[14] Batsuli G, Wheeler A P, Weyand A C, et al. Severe muscle bleeds in children and young adults with hemophilia A on emicizumab prophylaxis: Real-world retrospective multi-institutional cohort[J]. American Journal of Hematology, 2023, 98(10): 285-287.

[15] Mahlangu J, Kaczmarek R, von Drygalski A, et al. Twoyear outcomes of valoctocogene roxaparvovec therapy for hemophilia A[J]. The New England Journal of Medicine,2023, 388(8): 694-705.

[16] Peyvandi F, Mannucci P M, Garagiola I, et al. A randomized trial of factor VIII and neutralizing antibodies in hemophilia A[J]. The New England Journal of Medicine,2016, 374(21): 2054-2064.

[17] Fischer K, Lassila R, Peyvandi F, et al. Inhibitor development according to concentrate in severe hemophilia: Reporting on 1392 previously untreated patients from Europe and Canada[J]. Research and Practice in Thrombosis and Haemostasis, 2023, 7(8): 102265.

[18] Schmitt C, Emrich T, Chebon S, et al. Low immunogenicity of emicizumab in persons with haemophilia A[J].Haemophilia, 2021, 27(6): 984-992.

[19] Klamroth R, Hayes G, Andreeva T, et al. Global seroprevalence of pre-existing immunity against AAV5 and other AAV serotypes in people with hemophilia A[J].Human Gene Therapy, 2022, 33(7/8): 432-441.

[20] Boyce S, James I, Rangarajan S, et al. Seroprevalence to adeno-associated virus type 6 in people with hemophilia B from a UK adult cohort[J]. Research and Practice in Thrombosis and Haemostasis, 2022, 6(4): e12705.

[21] George L A, Monahan P E, Eyster M E, et al. Multiyearfactor VIII expression after AAV gene transfer for hemophilia A[J]. The New England Journal of Medicine,2021, 385(21): 1961-1973.

[22] George L A, Sullivan S K, Giermasz A, et al. Hemophilia B gene therapy with a high-specific-activity factor IX variant[J]. The New England Journal of Medicine, 2017,377(23): 2215-2227.

[23] Burke T, Asghar S, O'Hara J, et al. Clinical, humanistic,and economic burden of severe haemophilia B in adults receiving factor IX prophylaxis: Findings from the CHESS II real-world burden of illness study in Europe[J]. Orphanet Journal of Rare Diseases, 2021, 16(1): 521.

[24] Messori A, Trippoli S. The price of enhanced half-lifefactor IX[J]. Blood Transfusion, 2017, 15(4): 378.

[25] Fujii T, Kidoguchi Y, Takahashi N, et al. Budget impact analysis of Jivi (damoctocog Alfa pegol, Bay 94-9027)in severe hemophilia A in Japan[J]. Journal of Medical Economics, 2021, 24(1): 218-225.

[26] Sun J, Zhao Y, Yang R, et al. The demographics, treatment characteristics and quality of life of adult peoplewith haemophilia in China-results from the HERO study[J]. Haemophilia, 2017, 23(1): 89-97.

[27] Mu Y, Song K M, Song Y. A cross-sectional study of price and affordability of drugs for rare diseases in Shandong Province, China[J]. International Journal of Environmental Research and Public Health, 2022, 19(20):13319.

[28] Naddaf M. Researchers welcome $3.5-million haemophilia gene therapy—But questions remain[J]. Nature,2022, 612: 388-389.

[29] Meier N, Fuchs H, Galactionova K, et al. Cost-effective⁃ness analysis of etranacogene dezaparvovec versus ex⁃tended half-life prophylaxis for moderate-to-severe haemophilia B in Germany[J]. PharmacoEconomics-Open,2024, 8(3): 373-387.

[30] Wang T, Chen E, Regan C, et al. EE706 impact of valoctocogene roxaparvovec on the economic burden of adults with severe hemophilia A managed with prophylaxis in the United States[J]. Value in Health, 2023, 26(12):S190.

[31] Lin Z, Ran X, Liu C, et al. POSC166 cost-effectiveness of emicizumab prophylaxis therapy versus recombinant activated FVII on-demand therapy for hemophilia A with inhibitors in China[J]. Value in Health, 2022, 25(1): S119-S120.

[32] Miesbach W, Chowdary P, Coppens M, et al. Delivery of AAV-based gene therapy through haemophilia centres a need for re-evaluation of infrastructure and comprehensive care: A joint publication of EAHAD and EHC[J]. Haemophilia, 2021, 27(6): 967-973.

文章导航

/