专题:跨领域人工智能技术

人工智能技术追赶与新兴风险的潜在关联分析

  • 李芳 ,
  • 王晶晶 ,
  • 黄颖 ,
  • 姜李丹
展开
  • 1. 北京市科学技术研究院, 北京 100035;
    2. 武汉大学信息管理学院, 武汉 430072;
    3. 武汉大学科教管理与评价中心, 武汉 430072;
    4. 北京邮电大学经济管理学院, 北京 100876
李芳,副研究员,研究方向为科技政策、风险治理,电子信箱:lifang-buaa@outlook.com;姜李丹(通信作者),副教授,研究方向为技术创新与治理,电子信箱:dan_li0502@163.com

收稿日期: 2024-04-20

  修回日期: 2024-09-03

  网络出版日期: 2025-01-06

基金资助

教育部人文社会科学研究项目(18YJC630066);北京市社会科学基金青年项目(21GLC066);北京市科技新星计划资助(Z211100002121162)

A preliminary analysis of the potential relevance between artificial intelligence technological catch-up and emerging risks

  • LI Fang ,
  • WANG Jingjing ,
  • HUANG Ying ,
  • JIANG Lidan
Expand
  • 1. Beijing Academy of Science and Technology, Beijing 100035, China;
    2. School of Information Management, Wuhan University, Wuhan 430072, China;
    3. Center for Science, Technology & Education Assessment (CSTEA), Wuhan University, Wuhan 430072, China;
    4. School of Economics and Management, Beijing University of Posts and Telecommunications, Beijing 100876, China

Received date: 2024-04-20

  Revised date: 2024-09-03

  Online published: 2025-01-06

摘要

基于全球人工智能技术发展形势、技术与产业变革态势等现实情况以及人工智能技术追赶的理论视角,从风险认知、场景风险和博弈风险3个维度分析了人工智能技术追赶与潜在风险的关联关系,分析表明:当下人工智能技术追赶的基础性分析框架应当有机嵌入对技术风险的预警考量,并重视在不同的人工智能应用场景风险细分频谱下技术追赶模式的多样性表现。此外,随着“技术-政治-风险”的动态复杂交互,博弈风险对人工智能技术追赶的“负外部性”日益加剧,也成为制约人工智能技术追赶效率效能的关键因素。

本文引用格式

李芳 , 王晶晶 , 黄颖 , 姜李丹 . 人工智能技术追赶与新兴风险的潜在关联分析[J]. 科技导报, 2024 , 42(23) : 79 -84 . DOI: 10.3981/j.issn.1000-7857.2024.05.00506

Abstract

The various risks caused by the development of artificial intelligence (AI) technology are increasingly pervasive in every stage of innovation activities. It is a vital factor that we should take prospective and proactive reflection on the potential risks associated with the development of artificial intelligence technologies as we strive for advancements in this field. Based on the global development of artificial intelligence technology, technological and industrial advancement and the theoretical perspective of AI technology catch-up, this article analyzes the relationship between technological catch-up in artificial intelligence and potential risks from three dimensions: cognition risk, Scenario risk, and competition risk. This study concludes that risk perception should be embedded into the theoretical framework of AI technology catch-up, and more attention should be paid on the diversity of technology catch-up modes under the risk segmentation spectrum of different AI application scenarios. In addition, game risk in AI has been another key factor in restricting the efficiency of AI technology catch-up as the increasing negative externality caused by the dynamic and complex interaction of "technology-political-risk".

参考文献

[1] Lee K, Lim C S. Technological regimes, catching-up and leapfrogging: Findings from the Korean industries[J]. Research Policy, 2001, 30(3): 459-483.
[2] Lee K, Lim C, Song W. Emerging digital technology as a window of opportunity and technological leapfrogging: Catch-up in digital TV by the Korean firms[J]. International Journal of Technology Management, 2005, 29(1/2): 40-63.
[3] Kristinsson K, Rao R. Interactive learning or technology transfer as a way to catch-up? Analysing the wind energy industry in Denmark and India[J]. Industry and Innovation, 2008, 15(3): 297-320.
[4] Xiao Y G, Tylecote A, Liu J J. Why not greater catch-up by Chinese firms? The impact of IPR, corporate governance and technology intensity on late-comer strategies [J]. Research Policy, 2013, 42(3): 749-764.
[5] Guo B, Gao J, Chen X L. Technology strategy, technological context and technological catch-up in emerging economies: Industry-level findings from Chinese manufacturing [J]. Technology Analysis & Strategic Management, 2013, 25(2): 219-234.
[6] Qiu Y M, Ortolano L, Wang Y D. Factors influencing the technology upgrading and catch-up of Chinese wind turbine manufacturers: Technology acquisition mechanisms and government policies[J]. Energy Policy, 2013, 55: 305- 316.
[7] Rasiah R. Are electronics firms in Malaysia catching up in the technology ladder? [J]. Journal of the Asia Pacific Economy, 2010, 15(3): 301-319.
[8] Drine I. Institutions, governance and technology catch-up in North Africa[J]. Economic Modelling, 2012, 29(6): 2155-2162.
[9] 姜李丹, 薛澜. 我国新一代人工智能治理的时代挑战与范式变革[J]. 公共管理学报, 2022, 19(2): 1-11.
[10] 贾开, 薛澜. 人工智能伦理问题与安全风险治理的全球比较与中国实践[J]. 公共管理评论, 2021, 3(1): 122- 134.
[11] 阙天舒, 张纪腾. 人工智能时代背景下的国家安全治理:应用范式,风险识别与路径选择[J]. 高等学校文科学术文摘, 2020, 37(2): 1.
[12] 刘建新, 王毅, 吴贵生, 等. 后发国家产业技术追赶模式新探: 单路径、双路径与多路径[J]. 科学学与科学技术管理, 2011, 32(11): 93-99.
[13] 洪勇, 苏敬勤. 后发国家产业技术追赶模式研究[J]. 科学学与科学技术管理, 2008, 29(12): 18-23.
[14] Jung M, Lee K. Sectoral systems of innovation and productivity catch-up: Determinants of the productivity gap between Korean and Japanese firms[J]. Industrial and Corporate Change, 2010, 19(4): 1037-1069.
[15] Humphrey J, Schmitz H. How does insertion in global value chains affect upgrading in industrial clusters? [J]. Regional Studies, 2002, 36(9): 1017-1027.
[16] Cramer C. Can Africa industrialize by processing primary commodities? the case of Mozambican cashew nuts[J]. World Development, 1999, 27(7): 1247-1266.
[17] 毛献峰. 国内外人工智能技术应用模式比较研究[J]. 经济研究导刊, 2018(36): 130-132.
[18] Zhou Y, Dong F, Liu Y F, et al. A deep learning framework to early identify emerging technologies in largescale outlier patents: An empirical study of CNC machine tool[J]. Scientometrics, 2021, 126(2): 969-994.
[19] 张玉臣, 仪静雯, 廖凯诚. 关键核心技术演化规律及发展趋势研究[J]. 中国科技论坛, 2023(12): 28-37.
文章导航

/