结合边缘增强的全局自注意力遥感建筑物提取网络
1. 首都师范大学资源环境与旅游学院,北京 100048
2. 北京四维远见信息技术有限公司,北京 100070
3. 中国科学院空天信息创新研究院,北京 100094
4. 北京工业职业技术学院,北京 100144
5. 华北水利水电大学,郑州 450045
6. 中关村科学城城市大脑股份有限公司,北京 100081
收稿日期: 2024-01-03
修回日期: 2024-09-26
网络出版日期: 2025-01-07
基金资助
国家重点研发计划项目(2022YFB3903602);
北京工业职业技术学院校立课题(BGY2022KY-06QT)
Global self-attention remote sensing building extraction networkcombined with edge enhancement
1. College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China
2. Beijing Geo-Vision Information Technology Co., Ltd., Beijing 100070, China
3. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
4. Beijing Polytechnic College,Beijing 100144,China
5. North China University of Water Resources and Electric Power, Zhengzhou 450045, China
6. Zhongguancun Smart City Co., Ltd., Beijing 100081, China
Received date: 2024-01-03
Revised date: 2024-09-26
Online published: 2025-01-07
李振, 张振鑫, 王涛, 彭雪丽, 岳贵杰, 张德宇, 刘先林, 李建华 . 结合边缘增强的全局自注意力遥感建筑物提取网络[J]. 科技导报, 0 : 1 . DOI: 10.3981/j.issn.1000-7857.2024.01.00025
[1] Li D R, Wang M, Jiang J. China's high-resolution optical remote sensing satellites and their mapping applications[J]. Geo-spatial Information Science, 2021, 24(1): 85-94.
[2] 龚健雅, 张展, 贾浩巍, 等. 面向多源数据地物提取的遥感知识感知与多尺度特征融合网络[J]. 武汉大学学报(信息科学版), 2022, 47(10): 1546-1554.
[3] Hu S G, Wang L. Automated urban land-use classification with remote sensing[J]. International Journal of Re⁃mote Sensing, 2013, 34(3): 790-803.
[4] Ural S, Hussain E, Shan J. Building population mapping with aerial imagery and GIS data[J]. International Journal of Applied Earth Observation and Geoinformation, 2011,13(6): 841-852.
[5] Goetz S J, Smith A J, Jantz C, et al. Monitoring and predicting urban land use change[C]//Proc. IEEE International, Geoscience and Remote Sensing Symposium,IGARSS’03. Toulouse, France: IEEE, 2003, 3: 1567-1569.
[6] Peng J, Liu Y C. Model and context-driven building extraction in dense urban aerial images[J]. International Journal of Remote Sensing, 2005, 26(7): 1289-1307.
[7] Inglada J. Automatic recognition of man-made objects in high resolution optical remote sensing images by SVM classification of geometric image features[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2007, 62(3):236-248.
[8] Cetin M, Halici U, Aytekin Ö. Building detection in satellite images by textural features and Adaboost[C]//Proceedings of IAPR Workshop on Pattern Recognition in Re⁃mote Sensing. Piscataway, NJ: IEEE, 2010: 1-4.
[9] Li E, Femiani J, Xu S B, et al. Robust rooftop extraction from visible band images using higher order CRF[J].IEEE Transactions on Geoscience and Remote Sensing,2015, 53(8): 4483-4495.
[10] Zhang B, Chen Z C, Peng D L, et al. Remotely sensed big data: Evolution in model development for information extraction[point of view[J]. Proceedings of the IEEE,2019, 107(12): 2294-2301.
[11] Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation[M]//Lecture Notes in Computer Science. Cham: Springer International Publishing, 2015: 234-241.
[12] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway, NJ: IEEE, 2016: 770-778.
[13] Sun K, Xiao B, Liu D, et al. Deep high-resolution representation learning for human pose estimation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ: IEEE,2019: 5686-5696.
[14] Bittner K, Adam F, Cui S Y, et al. Building footprint ex⁃traction from VHR remote sensing images combined with normalized DSMs using fused fully convolutional networks[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(8):2615-2629.
[15] Cao Z Y, Fu K, Lu X D, et al. End-to-end DSM fusion networks for semantic segmentation in high-resolution aerial images[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(11): 1766-1770.
[16] Liu Y B, Zhang Z X, Zhong R F, et al. Multilevel building detection framework in remote sensing images based on convolutional neural networks[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(10): 3688-3700.
[17] Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[EB/OL]. [2023-12-23]. http://arxiv.org/abs/2010.11929
[18] Canny J. A computational approach to edge detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, PAMI-8(6): 679-698.
[19] Ba J L, Kiros J R, Hinton G E. Layer normalization[EB/OL]. [2023-12-23]. https://arxiv.org/abs/1607.06450v1
[20] Ji S P, Wei S Q, Lu M. Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(1): 574-586.[21] Maggiori E, Tarabalka Y, Charpiat G, et al. Can semantic labeling methods generalize to any city? the inria aerial image labeling benchmark[C]//Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Piscataway, NJ: IEEE, 2017: 3226-3229.
[22] Milletari F, Navab N, Ahmadi S A. V-net: Fully convolutional neural networks for volumetric medical image segmentation[EB/OL]. [2023-12-23]. https://arxiv. org/abs/1606.04797v1
[23] Zhao H S, Shi J P, Qi X J, et al. Pyramid scene parsing network[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway,NJ: IEEE, 2017: 6230-6239.
[24] Fu J, Liu J, Tian H J, et al. Dual attention network for scene segmentation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway, NJ: IEEE, 2019: 3141-3149.
[25] Li H C, Xiong P F, An J, et al. Pyramid attention network for semantic segmentation[EB/OL]. [2023-12-23].https://arxiv.org/abs/1805.10180v3
[26] Wei S Q, Ji S P, Lu M. Toward automatic building footprint delineation from aerial images using CNN and regularization[J]. IEEE Transactions on Geoscience and Re⁃mote Sensing, 2020, 58(3): 2178-2189.
[27] Liu P H, Liu X P, Liu M X, et al. Building footprint extraction from high-resolution images via spatial residual inception convolutional neural network[J]. Remote Sensing, 2019, 11(7): 830.
[28] Li Q Y, Shi Y L, Huang X, et al. Building footprint generation by integrating convolution neural network with feature pairwise conditional random field (FPCRF) [J].IEEE Transactions on Geoscience and Remote Sensing,2020, 58(11): 7502-7519.[29] Li Z, Zhang Z X, Chen D, et al. HCRB-MSAN: Horizontally connected residual blocks-based multiscale attention network for semantic segmentation of buildings in HSR remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 5534-5544.
/
〈 |
|
〉 |