特色专题:2024年科技热点回眸

2024年绿氢制储运技术研究热点回眸

  • 王旭升 , 1, 2 ,
  • 邹建新 , 1, 2, 3, * ,
  • 林羲 1, 2 ,
  • 胡志刚 1, 2 ,
  • 丁文江 , 1, 2, 3, *
展开
  • 1. 上海市氢科学重点实验室&上海交通大学氢科学中心, 上海 200240
  • 2. 上海交通大学材料科学与工程学院, 上海 200240
  • 3. 上海交通大学轻合金精密成型国家工程研究中心&金属基复合材料国家重点实验室, 上海 200240
邹建新(通信作者),教授,研究方向为镁基能源材料开发与应用,电子信箱:
丁文江(共同通信作者),教授,中国工程院院士,研究方向为先进镁合金材料开发与应用,电子信箱:

王旭升,助理研究员,研究方向为氢储运系统控制及优化,电子信箱:

收稿日期: 2024-12-25

  网络出版日期: 2025-02-10

基金资助

国家重点研发计划项目(2022YFB3803700)

国家自然科学基金项目(52171186)

国家自然科学基金项目(52401386)

版权

版权所有,未经授权,不得转载。

Review of research hotspots of green hydrogen production, storage and transportation in 2024

  • Xusheng WANG , 1, 2 ,
  • Jianxin ZOU , 1, 2, 3, * ,
  • Xi LIN 1, 2 ,
  • Zhigang HU 1, 2 ,
  • Wenjiang DING , 1, 2, 3, *
Expand
  • 1. Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, China
  • 2. School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • 3. National Engineering Research Center of Light Alloys Net Forming & State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2024-12-25

  Online published: 2025-02-10

Copyright

All rights reserved. Unauthorized reproduction is prohibited.

摘要

2024年,氢能技术产业迅猛发展,取得了多项突破性进展。在制氢方面,大规模绿氢示范项目不断增加,碱性电解槽成本逐渐下降,固体氧化物电解和质子交换膜电解等高效电解技术性能进一步提升,通过电极材料的优化,电解持续效率逐渐增加,膜电极运行寿命不断延长。在储运氢方面,除传统高压气态和液氢外,金属氢化物储氢、有机液态储氢、氨/甲醇等新型氢储运方式的技术成熟度逐渐提高。一方面,镁基合金、钛基合金等金属储氢技术的循环寿命及储氢效率进一步提升,同时通过规模化发展进一步降低了氢储运成本;另一方面,绿氨和绿色甲醇项目发展迅速,成为推动能源转型和工业脱碳的重要举措。未来,随着技术的持续创新,氢能将在交通、工业和大规模长周期储能等多个领域发挥更重要的作用,为碳中和目标的实现提供有力支持。

本文引用格式

王旭升 , 邹建新 , 林羲 , 胡志刚 , 丁文江 . 2024年绿氢制储运技术研究热点回眸[J]. 科技导报, 2025 , 43(1) : 47 -61 . DOI: 10.3981/j.issn.1000-7857.2024.12.01842

1
Allendorf M D , Stavila V , Snider J L , et al. Challenges to developing materials for the transport and storage of hydrogen[J]. Nature Chemistry, 2022, 14 (11): 1214- 1223.

DOI

2
Ishaq H , Dincer I , Crawford C . A review on hydrogen production and utilization: Challenges and opportunities[J]. International Journal of Hydrogen Energy, 2022, 47 (62): 26238- 26264.

DOI

3
Wang H T , Tong Z , Zhou G J , et al. Research and demonstration on hydrogen compatibility of pipelines: A review of current status and challenges[J]. International Journal of Hydrogen Energy, 2022, 47 (66): 28585- 28604.

DOI

4
Yue M L , Lambert H , Pahon E , et al. Hydrogen energy systems: A critical review of technologies, applications, trends and challenges[J]. Renewable and Sustainable Energy Reviews, 2021, 146: 111180.

DOI

5
Song M C , Zhang L T , Wu F Y , et al. Recent advances of magnesium hydride as an energy storage material[J]. Journal of Materials Science & Technology, 2023, 149: 99- 111.

6
Chang S H , Rajuli M F . An overview of pure hydrogen production via electrolysis and hydrolysis[J]. International Journal of Hydrogen Energy, 2024, 84: 521- 538.

DOI

7
Sebbahi S , Assila A , Alaoui Belghiti A , et al. A comprehensive review of recent advances in alkaline water electrolysis for hydrogen production[J]. International Journal of Hydrogen Energy, 2024, 82: 583- 599.

DOI

8
Chu C Y , Wu K , Luo B B , et al. Hydrogen storage by liquid organic hydrogen carriers: Catalyst, renewable carrier, and technology: A review[J]. Carbon Resources Conversion, 2023, 6 (4): 334- 351.

DOI

9
Dash S , Arjun Singh K , Jose S , et al. Advances in green hydrogen production through alkaline water electrolysis: A comprehensive review[J]. International Journal of Hydrogen Energy, 2024, 83: 614- 629.

DOI

10
2024年上半年氢能产业跟踪报告[R/OL]. (2024-09-26) [2024-12-31]. https://pdf.dfcfw.com/pdf/H301_AP202409-271640069432_1.pdf.

11
Niu Y. China set to lead global electrolyser installations in 2024[EB/OL]. (2024-10-10)[2024-12-31]. https://dialogue.earth/en/digest/china-set-to-lead-global-electrolyser-installations-in-2024/.

12
双良集团自主研发5000 Nm3/h碱性电解槽发布[EB/OL]. (2024-11-11)[2024-12-31]. https://www.nationalee.com/newsinfo/7738817.html.

13
单体产氢量3000 Nm3/h水电解制氢装备在邯郸下线[EB/OL]. (2024-05-17)[2024-12-31]. https://www.stdaily.com/index/kejixinwen/202405/4698ee592d38498dacfcca7b5a0c-18b7.shtml.

14
中能建制氢电解槽集采候选人公布, 关注入围企业[R/OL]. (2024-11-01)[2024-12-31]. https://pdf.dfcfw.com/pdf/H3_AP202411011640658731_1.pdf?1730452770000.pdf.

15
Zhao J , Urrego-Ortiz R , Liao N , et al. Rationally designed Ru catalysts supported on TiN for highly efficient and stable hydrogen evolution in alkaline conditions[J]. Nature Communications, 2024, 15 (1): 6391.

DOI

16
Urbano E , Pahon E , Yousfi-Steiner N , et al. Accelerated stress testing in proton exchange membrane water electrolysis-critical review[J]. Journal of Power Sources, 2024, 623: 235451.

DOI

17
Sezer N , Bayhan S , Fesli U , et al. A comprehensive review of the state-of-the-art of proton exchange membrane water electrolysis[J]. Materials Science for Energy Technologies, 2025, 8: 44- 65.

DOI

18
2024上半年PEM制氢市场发展迅猛, 动氢新能产品优势明显[EB/OL]. (2024-07-29) [2024-12-31]. https://www.htech360.com/a/36203.

19
Shen Y , Zhang X L , Qu M R , et al. Cr dopant mediates hydroxyl spillover on RuO2 for high-efficiency proton exchange membrane electrolysis[J]. Nature Communications, 2024, 15 (1): 7861.

DOI

20
Liu C , Geng Z , Wang X K , et al. Development of advanced anion exchange membrane from the view of the performance of water electrolysis cell[J]. Journal of Energy Chemistry, 2024, 90: 348- 369.

DOI

21
Mulk W U , Aziz A R A , Ismael M A , et al. Electrochemical hydrogen production through anion exchange membrane water electrolysis (AEMWE): Recent progress and associated challenges in hydrogen production[J]. International Journal of Hydrogen Energy, 2024, 94: 1174- 1211.

DOI

22
Miller H A . Green hydrogen from anion exchange membrane water electrolysis[J]. Current Opinion in Electrochemistry, 2022, 36: 101122.

DOI

23
南方电网首个兆瓦级阴离子交换膜制氢示范项目开工[EB/OL]. (2024-11-06)[2024-12-31]. https://m.bjx.com.cn/mnews/20241106/1409148.shtml.

24
AEM产业化起步: 前景广阔仍待实践大考[EB/OL]. (2024-12-13) [2024-12-31]. https://mp.weixin.qq.com/s/my-9oG4oIVyAjiB5NnlSqQ.

25
Li Z H , Lin G X , Wang L Q , et al. Seed-assisted formation of NiFe anode catalysts for anion exchange membrane water electrolysis at industrial-scale current density[J]. Nature Catalysis, 2024, 7: 944- 952.

DOI

26
Hauch A , Küngas R , Blennow P , et al. Recent advances in solid oxide cell technology for electrolysis[J]. Science, 2020, 370 (6513): eaba6118.

DOI

27
Wolf S E , Winterhalder F E , Vibhu V , et al. Solid oxide electrolysis cells-current material development and industrial application[J]. Journal of Materials Chemistry A, 2023, 11 (34): 17977- 18028.

DOI

28
Gohar O , Khan M Z , Saleem M , et al. Navigating the future of solid oxide fuel cell: Comprehensive insights into fuel electrode related degradation mechanisms and mitigation strategies[J]. Advances in Colloid and Interface Science, 2024, 331: 103241.

DOI

29
2024会是SOEC产业化的破局之年吗?[EB/OL]. (2024-02-29) [2024-12-31]. https://mp.weixin.qq.com/s/pIBpNYOcqVdB0rw9nbKLYg.

30
Guo Y G , Wang S , Li R T , et al. In situ exsolved CoFe alloy nanoparticles for stable anodic methane reforming in solid oxide electrolysis cells[J]. Joule, 2024, 8 (7): 2016- 2032.

DOI

31
邹建新. 氢气储存和运输[M]. 北京: 机械工业出版社, 2023.

32
Rusman N A A , Dahari M . A review on the current progress of metal hydrides material for solid-state hydrogen storage applications[J]. International Journal of Hydrogen Energy, 2016, 41 (28): 12108- 12126.

DOI

33
Ren L , Li Y H , Zhang N , et al. Nanostructuring of Mgbased hydrogen storage materials: Recent advances for promoting key applications[J]. Nano-Micro Letters, 2023, 15 (1): 93.

DOI

34
Ren L , Li Y H , Lin X , et al. Promoting hydrogen industry with high-capacity Mg-based solid-state hydrogen storage materials and systems[J]. Frontiers in Energy, 2023, 17 (3): 320- 323.

DOI

35
中科轩达布局建设国内最大固态储氢材料专业生产基地[EB/OL]. (2024-06-19) [2024-12-31]. http://www.zkxdnewenergy.com/display/396454.html.

36
全球首条百吨级镁基固态储氢材料产线在我国试车成功[EB/OL]. (2024-11-09)[2024-12-31]. https://www.htech3-60.com/a/37489.

37
全球首例大型固态储氢设备出海[EB/OL]. (2024-11-21). https://m.bjx.com.cn/mnews/20241121/1412249.shtml.

38
Zhang X Y , Ju S L , Li C Q , et al. Atomic reconstruction for realizing stable solar-driven reversible hydrogen storage of magnesium hydride[J]. Nature Communications, 2024, 15 (1): 2815.

DOI

39
Shao L F , Lin X , Bian L S , et al. Engineering control strategy of hydrogen gas direct-heating type Mg-based solid state hydrogen storage tanks: A simulation investigation[J]. Applied Energy, 2024, 375: 124134.

DOI

40
Lin A , Bagnato G . Revolutionising energy storage: The latest breakthrough in liquid organic hydrogen carriers[J]. International Journal of Hydrogen Energy, 2024, 63: 315- 329.

DOI

41
Ali A , Shaikh M N . Recent developments in catalyst design for liquid organic hydrogen carriers: Bridging the gap to affordable hydrogen storage[J]. International Journal of Hydrogen Energy, 2024, 78: 1- 21.

DOI

42
IPCEl. Hydrogenious LOHC receives multi-million grant for Green Hydrogen @ Blue Danube[EB/OL]. (2024-07-15) [2024-12-31]. https://hydrogenious.net/ipcei-hydrogenious-lohc-receives-multi-million-grant-for-green-hydrogen-blue-danube/.

43
Shi Y Z , Luo B C , Sang R , et al. Combination of nanoparticles with single-metal sites synergistically boosts co-catalyzed formic acid dehydrogenation[J]. Nature Communications, 2024, 15 (1): 8189.

DOI

44
Lamb K E , Dolan M D , Kennedy D F . Ammonia for hydrogen storage: A review of catalytic ammonia decomposition and hydrogen separation and purification[J]. International Journal of Hydrogen Energy, 2019, 44 (7): 3580- 3593.

DOI

45
Chang F , Gao W B , Guo J P , et al. Emerging materials and methods toward ammonia-based energy storage and conversion[J]. Advanced Materials, 2021, 33 (50): e2005721.

DOI

46
Shi Y B , Li H , Liu X P , et al. Green energy-driven ammonia production for sustainable development goals[J]. Chem, 2024, 10 (9): 2636- 2650.

DOI

47
Li S F , Zhou Y Y , Fu X B , et al. Long-term continuous ammonia electrosynthesis[J]. Nature, 2024, 629 (8010): 92- 97.

DOI

48
Feng Y Y , Huang L T , Xiao Z W , et al. Temporally decoupled ammonia splitting by a Zn-NH3 battery with an ammonia oxidation/hydrogen evolution bifunctional electrocatalyst as a cathode[J]. Journal of the American Chemical Society, 2024, 146 (11): 7771- 7778.

DOI

49
Mei D Q , Qiu X Y , Liu H Y , et al. Progress on methanol reforming technologies for highly efficient hydrogen production and applications[J]. International Journal of Hydrogen Energy, 2022, 47 (84): 35757- 35777.

DOI

50
Nemmour A , Inayat A , Janajreh I , et al. Green hydrogenbased E-fuels (E-methane, E-methanol, E-ammonia) to support clean energy transition: A literature review[J]. International Journal of Hydrogen Energy, 2023, 48 (75): 29011- 29033.

DOI

51
中国绿色低碳甲醇项目总投资超过4千亿[EB/OL]. (2024-10-21)[2024-12-31]. https://baijiahao.baidu.com/s?id=1813513238575342929&wfr=spider&for=pc.

52
Gao Z Y , Montini T , Mu J J , et al. Photocatalytic methanol dehydrogenation promoted synergistically by atomically dispersed Pd and clustered Pd[J]. Journal of the American Chemical Society, 2024, 146 (35): 24440- 24449.

DOI

53
国内最大氢能调峰电站项目备案通过[EB/OL]. (2024-07-29) [2024-12-31]. https://finance.sina.com.cn/roll/2024-07-29/doc-incfuzvf7856311.shtml.

54
2024年中国氢燃料电池行业市场前景预测研究报告[EB/OL]. (2024-09-23) [2024-12-31]. https://mp.weixin.qq.com/s/qzdOOXg6Op_ZWMHUnAPrHA.

55
林德为全球首座大型绿色钢铁厂提供工业气体与氢气回收技术[EB/OL]. (2024-05-06) [2024-12-31]. https://cnheipa.com/newsinfo/7131940.html.

56
中国氢能源及燃料电池产业白皮书[R/OL]. [2024-12-31]. https://www.chinah2data.com/file/group1/M00/00/00/wKgADmB2ZUKATCpjAQ8Cyy8FieM430.pdf.

57
Kourougianni F , Arsalis A , Olympios A V , et al. A comprehensive review of green hydrogen energy systems[J]. Renewable Energy, 2024, 231: 120911.

DOI

58
Wang X S , Shao L F , Hu S Y , et al. A techno-economic study of photovoltaic-solid oxide electrolysis cell coupled magnesium hydride-based hydrogen storage and transportation toward large-scale applications of green hydrogen[J]. Energy & Environmental Science, 2024, 17 (22): 8429- 8456.

文章导航

/