特色专题:2024年科技热点回眸

2024年柔性电池研发热点回眸

  • 夏欢 ,
  • 章炜 , * ,
  • 孙正明 , *
展开
  • 东南大学材料科学与工程学院, 南京 211189
章炜(通信作者),副教授,研究方向为柔性储能材料与器件,电子信箱:
孙正明(共同通信作者),教授,研究方向为能源与环境材料,电子信箱:

夏欢,博士研究生,研究方向为水系锌离子电池,电子信箱:

收稿日期: 2024-12-30

  网络出版日期: 2025-02-10

版权

版权所有,未经授权,不得转载。

Review of hot topics on flexible batteries in 2024

  • Huan XIA ,
  • Wei ZHANG , * ,
  • Zhengming SUN , *
Expand
  • School of Materials Science and Engineering, Southeast University, Nanjing 211189, China

Received date: 2024-12-30

  Online published: 2025-02-10

Copyright

All rights reserved. Unauthorized reproduction is prohibited.

摘要

随着柔性电子技术的发展,柔性电池因其可弯曲、折叠和拉伸等特点,成为可穿戴设备、软体机器人和植入式医疗设备等领域的重要技术。综述了柔性电池领域的研究进展,包括其关键组成部分、制造技术及实际应用案例等。详细探讨了柔性电池的核心组成材料,包括柔性电极、电解质和集流体的最新进展及其在性能提升方面的作用。介绍了柔性电池制造中所采用的先进技术,如静电纺丝、3D打印等,并分析这些技术在柔性电池制造中的优势和局限性。结合当前技术瓶颈探讨了柔性电池的未来发展方向和潜力。

本文引用格式

夏欢 , 章炜 , 孙正明 . 2024年柔性电池研发热点回眸[J]. 科技导报, 2025 , 43(1) : 62 -80 . DOI: 10.3981/j.issn.1000-7857.2025.01.00028

1
Sun C , Han Z Y , Wang X , et al. Advanced carbons nanofibers-based electrodes for flexible energy storage devices[J]. Advanced Functional Materials, 2023, 33 (52): 2305606.

DOI

2
Zhu X , Zhang H R , Huang Y X , et al. Recent progress of flexible rechargeable batteries[J]. Science Bulletin, 2024, 69 (23): 3730- 3755.

DOI

3
Xiao X , Zheng Z Y , Zhong X W , et al. Rational design of flexible Zn-based batteries for wearable electronic devices[J]. ACS Nano, 2023, 17 (3): 1764- 1802.

DOI

4
An Y L , Tian Y , Shen H T , et al. Two-dimensional MXenes for flexible energy storage devices[J]. Energy & Environmental Science, 2023, 16 (10): 4191- 4250.

5
Xia H , Xu G , Cao X , et al. Single-ion-conducting hydrogel electrolytes based on slide-ring pseudo-polyrotaxane for ultralong-cycling flexible zinc-ion batteries[J]. Advanced Materials, 2023, 35 (36): 2301996.

DOI

6
Gao G W , Li G , Zhao Y , et al. The structure design of flexible batteries[J]. Matter, 2023, 6 (11): 3732- 3746.

DOI

7
Zhang W , Feng P , Chen J , et al. Electrically conductive hydrogels for flexible energy storage systems[J]. Progress in Polymer Science, 2019, 88: 220- 240.

DOI

8
Xie Q , Yi C J , Zhang H N , et al. Stretchable Zn-ion hybrid capacitor with hydrogel encapsulated 3D interdigital structure[J]. Advanced Energy Materials, 2024, 14 (8): 2303592.

DOI

9
Zhang W , Xia H , Chen P , et al. Research Progress on the application of electrically conductive hydrogel electrodes in flexible energy storage systems[J]. Acta Polymerica Sinica, 2024, 55 (3): 255- 274.

10
Zhang W , Xia H , Cao X , et al. Research progress on hydrogel electrolytes for flexible zinc-ion batteries[J]. Chinese Journal of Organic Chemistry, 2024, 44 (1): 148.

DOI

11
Hu L B , Wu H , La Mantia F , et al. Thin, flexible secondary Li-ion paper batteries[J]. ACS Nano, 2010, 4 (10): 5843- 5848.

DOI

12
Cui L F , Hu L B , Choi J W , et al. Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries[J]. ACS Nano, 2010, 4 (7): 3671- 3678.

DOI

13
Liu W , Song M S , Kong B , et al. Flexible and stretchable energy storage: Recent advances and future perspectives[J]. Advanced Materials, 2017, 29 (1): 1603436.

DOI

14
Mackanic D G , Chang T H , Huang Z J , et al. Stretchable electrochemical energy storage devices[J]. Chemical Society Reviews, 2020, 49 (13): 4466- 4495.

DOI

15
Kong L , Tang C , Peng H J , et al. Advanced energy materials for flexible batteries in energy storage: A review[J]. SmartMat, 2020, 1 (1): smm2.1007.

DOI

16
Zhao C L , Lu Y X , Chen L Q , et al. Flexible Na batteries[J]. InfoMat, 2020, 2 (1): 126- 138.

DOI

17
Wang H G , Li W , Liu D P , et al. Flexible electrodes for sodium-ion batteries: Recent progress and perspectives[J]. Advanced Materials, 2017, 29 (45): 1703012.

DOI

18
Wang H G , Zhang X B . Organic carbonyl compounds for sodium-ion batteries: Recent progress and future perspectives[J]. Chemistry-A European Journal, 2018, 24 (69): 18235- 18245.

DOI

19
Al-Amin M , Islam S , Shibly S U A , et al. Comparative review on the aqueous zinc-ion batteries (AZIBs) and flexible zinc-ion batteries (FZIBs)[J]. Nanomaterials, 2022, 12 (22): 3997.

DOI

20
Yu P , Zeng Y X , Zhang H Z , et al. Flexible Zn-ion batteries: Recent progresses and challenges[J]. Small, 2019, 15 (7): 1804760.

DOI

21
Zeng Y , Liang J , Zheng J X , et al. Recent progress in advanced flexible zinc ion battery design[J]. Applied Physics Reviews, 2022, 9 (2): 021304.

DOI

22
Xia H , Zhang W , Miao C Y , et al. Ultra-thin amphiphilic hydrogel electrolyte for flexible zinc-ion paper batteries[J]. Energy & Environmental Science, 2024, 17 (18): 6507- 6520.

23
Pomerantseva E , Bonaccorso F , Feng X L , et al. Energy storage: The future enabled by nanomaterials[J]. Science, 2019, 366 (6468): eaan8285.

DOI

24
Deng R , He T . Flexible solid-state lithium-ion batteries: Materials and structures[J]. Energies, 2023, 16 (12): 4549.

DOI

25
Zhou G M , Li F , Cheng H M . Progress in flexible lithium batteries and future prospects[J]. Energy & Environmental Science, 2014, 7 (4): 1307- 1338.

26
Zhang G X , Chen X , Ma Y L , et al. Recent advances and practical challenges of high-energy-density flexible lithium-ion batteries[J]. Frontiers of Chemical Science and Engineering, 2024, 18 (8): 91.

DOI

27
Zuo L L , Lu D , Yang T Y , et al. Recent achievements of free-standing material and interface optimization in highenergy-density flexible lithium batteries[J]. Carbon Neutralization, 2022, 1 (3): 316- 345.

DOI

28
Ponnalagar D , Hang D R , Liang C T , et al. Recent advances and future prospects of low-dimensional Mo2C MXenebased electrode for flexible electrochemical energy storage devices[J]. Progress in Materials Science, 2024, 145: 101308.

DOI

29
Zhang W W , Zuo C L , Tang C , et al. The current developments and perspectives of V2O5 as cathode for rechargeable aqueous zinc-ion batteries[J]. Energy Technology, 2021, 9 (2): 2000789.

DOI

30
Zhao Y L , Zhu Y H , Zhang X B . Challenges and perspectives for manganese-based oxides for advanced aqueous zinc-ion batteries[J]. InfoMat, 2020, 2 (2): 237- 260.

DOI

31
Dong H B , Li J W , Guo J , et al. Insights on flexible zincion batteries from lab research to commercialization[J]. Advanced Materials, 2021, 33 (20): 2007548.

DOI

32
Wang J C , Zhou W J , Zhang N , et al. Review on poly(ethylene oxide) -based solid electrolytes: Key issues, potential solutions, and outlook[J]. Energy & Fuels, 2024, 38 (19): 18395- 18412.

33
Wang J C , Liu X Y , Zhang N , et al. Constructing poly(ethylene oxide) -based composite solid electrolytes: Starting from the internal mechanism in batteries[J]. Materials Chemistry Frontiers, 2024, 8 (20): 3446- 3463.

DOI

34
Amiri A , Bruno A , Polycarpou A A . Configuration-dependent stretchable all-solid-state supercapacitors and hybrid supercapacitors[J]. Carbon Energy, 2023, 5 (5): e320.

DOI

35
Cheng M , Deivanayagam R , Shahbazian-Yassar R . 3D printing of electrochemical energy storage devices: A review of printing techniques and electrode/electrolyte architectures[J]. Batteries & Supercaps, 2020, 3 (2): 130- 146.

36
Liu J Y , Long J W , Shen Z H , et al. A self-healing flexible quasi-solid zinc-ion battery using all-In-one electrodes[J]. Advanced Science, 2021, 8 (8): 2004689.

DOI

37
Lu K , Jiang T T , Hu H B , et al. Hydrogel electrolytes for quasi-solid zinc-based batteries[J]. Frontiers in Chemistry, 2020, 8: 546728.

DOI

38
Xie X Y , Wang C Y , Xie J B , et al. Construction of double-network hydrogel electrolytes for long-cycle dendritefree zinc anodes[J]. ACS Applied Energy Materials, 2024, 7 (3): 1162- 1171.

DOI

39
Hong L , Wu X M , Liu Y S , et al. Self-adapting and selfhealing hydrogel interface with fast Zn2+ transport kinetics for highly reversible Zn anodes[J]. Advanced Functional Materials, 2023, 33 (29): 2300952.

DOI

40
Foreman E , Zakri W , Hossein Sanatimoghaddam M , et al. A review of inactive materials and components of flexible lithium-ion batteries[J]. Advanced Sustainable Systems, 2017, 1 (11): 1700061.

DOI

41
Xiang F W , Cheng F , Sun Y J , et al. Recent advances in flexible batteries: From materials to applications[J]. Nano Research, 2023, 16 (4): 4821- 4854.

DOI

42
Tang K , Tian L Y , Zhang Y W , et al. Anode-free lithium metal batteries: A promising flexible energy storage system[J]. Journal of Materials Chemistry A, 2024, 12 (27): 16268- 16292.

DOI

43
Peng H , Zhang T P , Shao W L , et al. All MOF-derivedcarbon material-based integrated electrode constructed by carbon nanosheet sulfur host and Fe microparticles with carbon nanofiber network interlayer for lithium-sulfur batteries[J]. Applied Surface Science, 2021, 569: 150935.

DOI

44
Zhang H N , Shui T , Moloto N , et al. Dendrite-free zinc metal anode for long-life zinc-ion batteries enabled by an artificial hydrophobic-zincophilic coating[J]. Journal of Colloid and Interface Science, 2025, 678: 1148- 1157.

DOI

45
Zhang H N , Shui T , Zhang W , et al. Parallel zinc deposition enabled by diethylene triaminepentaacetic acid induced interfacial complex for dendrite-free zinc metal anode[J]. Energy Storage Materials, 2024, 71: 103595.

DOI

46
Zhang H N , You Y R , Sha D W , et al. Planar deposition via in situ conversion engineering for dendrite-free zinc batteries[J]. Advanced Materials, 2024, 36 (44): 2409763.

DOI

47
Liu T , Yu Y , Yang X Y , et al. Lithium and stannum hybrid anodes for flexible wire-type lithium-oxygen batteries[J]. Small Structures, 2020, 1 (2): 2000015.

DOI

48
Ma X D , Xiong X H , Zou P J , et al. General and scalable fabrication of core-shell metal Sulfides@C anchored on 3D N-doped foam toward flexible sodium ion batteries[J]. Small, 2019, 15 (45): 1903259.

DOI

49
Fu T Y , Tong X , Zhou Y , et al. One-step hydrothermal synthesis of CoNi bimetallic phosphide nanoflowers for high-performance quasi-solid-state zinc-ion batteries[J]. Journal of Alloys and Compounds, 2022, 918: 165734.

DOI

50
Ye L Z , Qi S T , Cheng T K , et al. Vanadium redox flow battery: Review and perspective of 3D electrodes[J]. ACS Nano, 2024, 18 (29): 18852- 18869.

DOI

51
Wang J X , Piao W X , Jin X Z , et al. Recent progress in metal nanowires for flexible energy storage devices[J]. Frontiers in Chemistry, 2022, 10: 920430.

DOI

52
Dai C L , Sun G Q , Hu L Y , et al. Recent progress in graphene-based electrodes for flexible batteries[J]. InfoMat, 2020, 2 (3): 509- 526.

DOI

53
Zhang R Z , Palumbo A , Kim J C , et al. Flexible graphene-, graphene-oxide-, and carbon-nanotube-based supercapacitors and batteries[J]. Annalen der Physik, 2019, 531 (10): 1800507.

DOI

54
Zhu S , Sheng J , Chen Y , et al. Carbon nanotubes for flexible batteries: Recent progress and future perspective[J]. National Science Review, 2021, 8 (5): nwaa261.

DOI

55
Wu Z P , Wang Y L , Liu X B , et al. Carbon-nanomaterialbased flexible batteries for wearable electronics[J]. Advanced Materials, 2019, 31 (9): 1800716.

DOI

56
Xia X L , Yang J , Liu Y , et al. Material choice and structure design of flexible battery electrode[J]. Advanced Science, 2023, 10 (3): 2204875.

DOI

57
Yu X , Fu Y P , Cai X , et al. Flexible fiber-type zinc-carbon battery based on carbon fiber electrodes[J]. Nano Energy, 2013, 2 (6): 1242- 1248.

DOI

58
Zhang Y , Bai W Y , Cheng X L , et al. Flexible and stretchable lithium-ion batteries and supercapacitors based on electrically conducting carbon nanotube fiber springs[J]. Angewandte Chemie International Edition, 2014, 53 (52): 14564- 14568.

DOI

59
Qian G Y , Liao X B , Zhu Y X , et al. Designing flexible lithium-ion batteries by structural engineering[J]. ACS Energy Letters, 2019, 4 (3): 690- 701.

DOI

60
Zhao Y F , Guo J C . Development of flexible Li-ion batteries for flexible electronics[J]. InfoMat, 2020, 2 (5): 866- 878.

DOI

61
Meng Q H , Wu H P , Mao L J , et al. Combining electrode flexibility and wave-like device architecture for highly flexible Li-ion batteries[J]. Advanced Materials Technologies, 2017, 2 (7): 1700032.

DOI

62
Cong L D , Zhu H Y , Zhang S C , et al. Co3O4 anchored on ionic liquid modified PAN as anode materials for flexible lithium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2022, 908: 116105.

DOI

63
Yin L , Seo J K , Kurniawan J , et al. Highly stable battery pack via insulated, reinforced, buckling-enabled interconnect array[J]. Small, 2018, 14 (43): 1800938.

DOI

64
Song W J , Yoo S , Song G , et al. Recent progress in stretchable batteries for wearable electronics[J]. Batteries & Supercaps, 2019, 2 (3): 181- 199.

65
Li X Y , Jin X T , Wang Y , et al. All-direct laser patterning zinc-based microbatteries[J]. Advanced Functional Materials, 2024, 34 (17): 2314060.

DOI

66
Zhang Y Z , Wang Y , Cheng T , et al. Printed supercapacitors: Materials, printing and applications[J]. Chemical Society Reviews, 2019, 48 (12): 3229- 3264.

DOI

67
Lee J H , Wee S B , Kwon M S , et al. Strategic dispersion of carbon black and its application to ink-jet-printed lithium cobalt oxide electrodes for lithium ion batteries[J]. Journal of Power Sources, 2011, 196 (15): 6449- 6455.

DOI

68
Liu J H , Wang P , Gao Z H , et al. Review on electrospinning anode and separators for lithium ion batteries[J]. Renewable and Sustainable Energy Reviews, 2024, 189: 113939.

DOI

69
Wang Y , He J L , Cao D X , et al. Opening twisted polymer chains for simultaneously high printability and battery fastcharge[J]. Energy Storage Materials, 2023, 55: 42- 54.

DOI

70
Moon S , Yoo J K , Jung Y H , et al. Effective suppression of polysulfide dissolution by uniformly transfer-printed conducting polymer on sulfur cathode for Li-S batteries[J]. Journal of the Electrochemical Society, 2017, 164 (1): A6417- A6421.

DOI

71
Li Q , Xu J B , Wu X , et al. 3D-printed graded graphene aerogel electrode for vanadium redox flow battery[J]. Journal of Energy Storage, 2024, 101: 113951.

DOI

72
Ribeiro J F , Sousa R , Cunha D J , et al. A chemically stable PVD multilayer encapsulation for lithium microbatteries[J]. Journal of Physics D: Applied Physics, 2015, 48 (39): 395306.

DOI

73
Hwa Y , Kim W S , Yu B C , et al. Mesoporous nano-Si anode for Li-ion batteries produced by magnesio-mechanochemical reduction of amorphous SiO2[J]. Energy Technology, 2013, 1 (5/6): 327- 331.

文章导航

/