特色专题:2024年科技热点回眸

2024年AI在环境领域的应用热点回眸

  • 郑祥 , 1, 2, 3 ,
  • 杨清雯 1 ,
  • 石磊 4 ,
  • 程荣 , 1, 2, 3, *
展开
  • 1. 中国人民大学化学与生命资源学院, 北京 100872
  • 2. 中国人民大学膜技术创新与产业发展研究中心, 北京 100872
  • 3. 北京碧水源科技股份有限公司国家企业技术中心, 北京 102206
  • 4. 中国人民大学生态环境学院, 北京 100872
程荣(通信作者),教授,研究方向为环境公共卫生、环境功能材料,电子信箱:

郑祥,教授,研究方向为环境公共卫生与膜分离,电子信箱:

收稿日期: 2025-01-02

  网络出版日期: 2025-02-10

基金资助

国家自然科学基金项目(52470224)

北京市自然科学基金项目(8232036)

版权

版权所有,未经授权,不得转载。

Review of hot applications of AI in the environmental field in 2024

  • Xiang ZHENG , 1, 2, 3 ,
  • Qingwen YANG 1 ,
  • Lei SHI 4 ,
  • Rong CHENG , 1, 2, 3, *
Expand
  • 1. School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
  • 2. Collaborative Innovation and Industrial Development Research Center for Membrane Technology, Renmin University of China, Beijing 100872, China
  • 3. National Enterprise Technology Center, Beijing Originwater Technology Co., Ltd., Beijing 102206, China
  • 4. School of Ecology & Environment, Renmin University of China, Beijing 100872, China

Received date: 2025-01-02

  Online published: 2025-02-10

Copyright

All rights reserved. Unauthorized reproduction is prohibited.

摘要

人工智能技术具有强大、高效和灵活的数据分析处理能力和模式识别与预测能力,能够很好地适应复杂变化的环境系统,已成为环境领域备受关注的新兴工具。以发表在国际顶级学术期刊或具有重要影响的研究成果为基础,盘点了2024年人工智能技术在环境监测、气候变化、公共卫生安全等领域的重要研究及应用,并展望了生成式人工智能在环境领域的发展前景,为推动环境领域人工智能技术的研究和应用提供参考。

本文引用格式

郑祥 , 杨清雯 , 石磊 , 程荣 . 2024年AI在环境领域的应用热点回眸[J]. 科技导报, 2025 , 43(1) : 81 -95 . DOI: 10.3981/j.issn.1000-7857.2025.01.00029

1
McCarthy J , Minsky M , Rochester N , et al. A proposal for the Dartmouth summer research project on artificial intelligence, August 31, 1955[J]. AI Magazine, 2006, 27 (4): 12- 14.

2
Haupt S E , Gagne D J , Hsieh W W , et al. The history and practice of AI in the environmental sciences[J]. Bulletin of the American Meteorological Society, 2022, 103 (5): E1351- E1370.

DOI

3
Konya A , Nematzadeh P . Recent applications of AI to environmental disciplines: A review[J]. Science of the Total Environment, 2024, 906: 167705.

DOI

4
Zhi W , Appling A P , Golden H E , et al. Deep learning for water quality[J]. Nature Water, 2024, 2: 228- 241.

DOI

5
Zhu J J , Jiang J Y , Yang M Q , et al. ChatGPT and environmental research[J]. Environmental Science & Technology, 2023, 57 (46): 17667- 17670.

6
Wu Y P , Xu M , Liu S M . Generative artificial intelligence: A new engine for advancing environmental science and engineering[J]. Environmental Science & Technology, 2024, 58 (40): 17524- 17528.

7
Subramaniam S , Raju N , Ganesan A , et al. Artificial intelligence technologies for forecasting air pollution and human health: A narrative review[J]. Sustainability, 2022, 14 (16): 9951.

DOI

8
Jiang J Q , Xiang X , Zhou Q H , et al. Optimization of a novel engineered ecosystem integrating carbon, nitrogen, phosphorus, and sulfur biotransformation for saline wastewater treatment using an interpretable machine learning approach[J]. Environmental Science & Technology, 2024, 58 (29): 12989- 12999.

9
Chen S Y , Huang J L , Wang P , et al. Acoupled model to improve river water quality prediction towards addressing non-stationarity and data limitation[J]. Water Research, 2024, 248: 120895.

10
Huang S , Xia J , Wang Y L , et al. Pollution loads in the middle-lower Yangtze River by coupling water quality models with machine learning[J]. Water Research, 2024, 263: 122191.

11
Lombard M A , Brown E E , Saftner D M , et al. Estimating lithium concentrations in groundwater used as drinking water for the conterminous United States[J]. Environmental Science & Technology, 2024, 58 (2): 1255- 1264.

12
Manisalidis I , Stavropoulou E , Stavropoulos A , et al. Environmental and health impacts of air pollution: Areview[J]. Frontiers in Public Health, 2020, 8: 14.

13
Mai Z L , Shen H Z , Zhang A X , et al. Convolutional neural networks facilitate process understanding of megacity ozone temporal variability[J]. Environmental Science & Technology, 2024, 58 (35): 15691- 15701.

14
Zhang S B , Wang S S , Zhu J , et al. Stacking machine learning models empowered high time-height-resolved ozone profiling from the ground to the stratopause based on MAX-DOAS observation[J]. Environmental Science & Technology, 2024, 58 (17): 7433- 7444.

15
Zhang H Z , Ren R , Gao X , et al. Synchronous monitoring agricultural water qualities and greenhouse gas emissions based on low-cost internet of things and intelligent algorithms[J]. Water Research, 2025, 268: 122663.

DOI

16
Abdulraheem M I , Zhang W , Li S X , et al. Advancement of remote sensing for soil measurements and applications: A comprehensive review[J]. Sustainability, 2023, 15 (21): 15444.

DOI

17
Tan T H , Genova G , Heuvelink G B M , et al. Importance of terrain and climate for predicting soil organic carbon is highly variable across local to continental scales[J]. Environmental Science & Technology, 2024, 58 (26): 11492- 11503.

18
Ali T , Rehman S U , Ali S , et al. Smart agriculture: Utilizing machine learning and deep learning for drought stress identification in crops[J]. Scientific Reports, 2024, 14: 30062.

DOI

19
Eyring V , Bony S , Meehl G A , et al. Overview of the Coupled Model Intercomparison Project Phase 6(CMIP6) experimental design and organization[J]. Geoscientific Model Development, 2016, 9 (5): 1937- 1958.

DOI

20
Eyring V , Collins W D , Gentine P , et al. Pushing the frontiers in climate modelling and analysis with machine learning[J]. Nature Climate Change, 2024, 14: 916- 928.

DOI

21
Lorenzelli F . The essence of chaos[M]. London: CRC Press, 1993.

22
Chen L , Zhong X H , Zhang F , et al. FuXi: A cascade machine learning forecasting system for 15-day global weather forecast[J]. NPJ Climate and Atmospheric Science, 2023, 6: 190.

DOI

23
Price I , Sanchez-Gonzalez A , Alet F , et al. Probabilistic weather forecasting with machine learning[J]. Nature, 2025, 637: 84- 90.

DOI

24
Chen L , Zhong X H , Li H , et al. A machine learning model that outperforms conventional global subseasonal forecast models[J]. Nature Communications, 2024, 15: 6425.

DOI

25
Cavaiola M , Cassola F , Sacchetti D , et al. Hybrid AI-enhanced lightning flash prediction in the medium-range forecast horizon[J]. Nature Communications, 2024, 15: 1188.

DOI

26
Zhao S , Jin F F , Stuecker M F , et al. Explainable El Niño predictability from climate mode interactions[J]. Nature, 2024, 630: 891- 898.

DOI

27
Cheong T S , Kim S , Koo K M . Development of measured hydrodynamic information-based flood early warning system for small streams[J]. Water Research, 2024, 263: 122159.

DOI

28
Das P , Posch A , Barber N , et al. Hybrid physics-AI outperforms numerical weather prediction for extreme precipitation nowcasting[J]. NPJ Climate and Atmospheric Science, 2024, 7: 282.

DOI

29
Ravuri S , Lenc K , Willson M , et al. Skilful precipitation nowcasting using deep generative models of radar[J]. Nature, 2021, 597 (7878): 672- 677.

DOI

30
Yavas C E , Chen L , Kadlec C , et al. Improving earthquake prediction accuracy in Los Angeles with machine learning[J]. Scientific Reports, 2024, 14: 24440.

DOI

31
Pruthi D , Zhu Q Y , Wang W H , et al. Multiresolution analysis of HRRR meteorological parameters and GOES-R AOD for hourly PM2.5 prediction[J]. Environmental Science & Technology, 2024, 58 (45): 20040- 20048.

32
Oyounalsoud M S , Yilmaz A G , Abdallah M , et al. Drought prediction using artificial intelligence models based on climate data and soil moisture[J]. Scientific Reports, 2024, 14: 19700.

DOI

33
Xu J , Li X , Xi C W , et al. Development of a machine learning model to support low cost real-time Legionella monitoring in premise plumbing systems[J]. Water Research, 2024, 267: 122510.

DOI

34
Oh S , Byeon H , Wijaya J . Machine learning surveillance of foodborne infectious diseases using wastewater microbiome, crowdsourced, and environmental data[J]. Water Research, 2024, 265: 122282.

DOI

35
Clarke R , Bharucha T , Arman B Y , et al. Using matrix assisted laser desorption ionisation mass spectrometry combined with machine learning for vaccine authenticity screening[J]. NPJ Vaccines, 2024, 9: 155.

DOI

36
Liu H B , Su Y , Peng M , et al. Prediction of prognosis in patients with cerebral contusions based on machine learning[J]. Scientific Reports, 2024, 14: 31993.

DOI

37
Wendland P , Schenkel-Häger C , Wenningmann I , et al. An optimal antibiotic selection framework for Sepsis patients using Artificial Intelligence[J]. NPJ Digital Medicine, 2024, 7: 343.

DOI

38
Hamedi S Z , Emami H , Khayamzadeh M , et al. Application of machine learning in breast cancer survival prediction using a multimethod approach[J]. Scientific Reports, 2024, 14: 30147.

DOI

39
Liu R S , Zayed T , Xiao R . Advanced acoustic leak detection in water distribution networks using integrated generative model[J]. Water Research, 2024, 254: 121434.

DOI

40
Majumder S , Dong L , Doudi F , et al. Exploring the capabilities and limitations of large language models in the electric energy sector[J]. Joule, 2024, 8 (6): 1544- 1549.

DOI

41
TainGong. AI for sustainability[EB/OL]. [2025-01-02]. https://www.tiangong.earth/ai .

42
Guo T C, Chen X Y, Wang Y Q, et al. Large language model based multi-agents: A survey of progress and challenges[C]//Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence. International Joint Conferences on Artificial Intelligence Organization, 2024.

文章导航

/