蒲菠,正高级工程师,研究方向为集成芯片与先进封装领域电子设计自动化(EDA),电子信箱:pubo@detooltech.com |
收稿日期: 2024-12-16
网络出版日期: 2025-02-10
版权
Hotspots and trends in collaborative research of numerical simulation and multiphysics in 2024: A review
Received date: 2024-12-16
Online published: 2025-02-10
Copyright
随着硬件结构的高集成化、复杂化和3维化,多物理场耦合仿真已成为工程应用中具有挑战性的环节之一,同时也成为跨学科领域研究的主流方向之一,正成为促进电子科学与技术、图论和网格技术、热力学和动力学等进步的重要手段。然而,目前存在多物理场耦合机理研究不清晰,仿真手段和工具缺乏等问题,严重制约了多物理场耦合仿真技术的应用和推广。从多物理场建模仿真技术和多物理场效应与仿真分析2个方面,回顾了2024年数值仿真计算与多物理场协同相关的研究进展。建模仿真技术,从器件到芯片、芯粒到封装、电路板到系统,覆盖范围持续扩大;效应研究和仿真技术,从机理分析和工程应用,进展显著。可以预测,未来几年内,随着2.5维和3维芯片集成的需求爆发,多物理场耦合仿真技术将围绕新的应用场景,在解决实际问题和行业挑战上发挥更大的价值。
蒲菠 , 陈文超 , 张召富 , 陈增辉 , 赵毅 , 郝沁汾 , 孙凝晖 . 2024年数值仿真计算与多物理场协同研究热点回眸[J]. 科技导报, 2025 , 43(1) : 118 -131 . DOI: 10.3981/j.issn.1000-7857.2024.12.01753
1 |
集成芯片前沿技术科学基础专家组, 中国计算机学会集成电路/容错计算专业委员会. 集成芯片与芯粒技术白皮书[M]. 北京: 中国计算机学会, 2023.
|
2 |
|
3 |
项少林, 郭茂, 蒲菠, 等. Chiplet技术发展现状[J]. 科技导报, 2023, 41 (19): 113- 131.
|
4 |
|
5 |
|
6 |
Pu B, Pak J S, Jo C, et al. Design of 2.5 D interposer in high bandwidth memory and through silicon via for high speed signal[EB/OL]. [2024-12-10]. https://doi.org/10.3622-7/techrxiv.12950261.v1.
|
7 |
Julien B, Fabrice F C D, Tadashi K, et al. Development of compression molding process for Fan-Out wafer level packaging[C]//Proceedings of IEEE 70th Electronic Components and Technology Conference (ECTC). Piscataway, NJ: IEEE, 2020: 1965-1972.
|
8 |
|
9 |
Bourjot E, Bond A, Nadi N, et al. Integration and process challenges of self assembly applied to die-to-wafer hybrid bonding[C]//Proceedings of IEEE 73rd Electronic Components and Technology Conference (ECTC). Piscataway, NJ: IEEE, 2023: 1397-1402.
|
10 |
|
11 |
|
12 |
|
13 |
|
14 |
|
15 |
Sargent R G. Verification and validation of simulation models: An advanced tutorial[C]//Proceedings of Winter Simulation Conference (WSC). Piscataway, NJ: IEEE, 2020: 16-29.
|
16 |
|
17 |
|
18 |
|
19 |
|
20 |
|
21 |
|
22 |
|
23 |
|
24 |
|
25 |
|
26 |
|
27 |
|
28 |
|
29 |
|
30 |
|
31 |
|
32 |
|
33 |
|
34 |
|
35 |
|
36 |
|
37 |
|
38 |
|
39 |
Mounce G, Lyke J, Horan S, et al. Chiplet based approach for heterogeneous processing and packaging architectures [C]//Proceedings of IEEE Aerospace Conference. Piscataway, NJ: IEEE, 2016: 1-12.
|
40 |
|
41 |
|
42 |
|
43 |
Chen S X, Zhang H Y, Ling Z C, et al. The survey of chiplet-based integrated architecture: An EDA perspective[EB/OL]. [2024-12-10]. https://arxiv.org/abs/2411.04410v1.
|
44 |
|
45 |
|
46 |
COMSOL Multiphysics® v. 6.3[EB/OL]. [2024-12-13]. http//: www. comsol. com.
|
47 |
|
48 |
|
49 |
|
50 |
|
51 |
|
52 |
|
53 |
|
54 |
|
55 |
Sun G L, Dai Y W, Qin F, et al. Warpage prediction of wafer-level interposer packaging using equivalent model[C]//Proceedings of 23rd International Conference on Electronic Packaging Technology (ICEPT). Piscataway, NJ: IEEE, 2022: 1-5.
|
56 |
|
57 |
|
58 |
Wang T H, Feng H W, Li J Q, et al. Cross-scale reliability simulation of chiplet devices based on sub-modeling approach[C]//Proceedings of 25th International Conference on Electronic Packaging Technology (ICEPT). Piscataway, NJ: IEEE, 2024: 1-5.
|
59 |
Jiang T F, Ryu S K, Zhao Q, et al. Measurement and analysis of thermal stresses in 3-D integrated structures containing through-silicon-vias[C]//Proceedings of IEEE International Interconnect Technology Conference. Piscataway, NJ: IEEE, 2012: 1-3.
|
60 |
|
61 |
Li X, Yin X K, Ma X Y, et al. Thermal cycling reliability analysis of 2.5D chiplet based on silicon interposer[C]//Proceedings of International Applied Computational Electromagnetics Society Symposium (ACES-China). Piscataway, NJ: IEEE, 2024: 1-3.
|
62 |
Liu K Y, Qin H Y, Guo J R, et al. Stress and fatigue life studies of solder joints in an advanced packaging with chiplet[C]//Proceedings of International Conference on Mechatronics, IoT and Industrial Informatics (ICMIII). Piscataway, NJ: IEEE, 2023: 187-191.
|
63 |
|
64 |
Hao S D, Chu W S, Ho P S, et al. Analytical and finite element study on warpage and stress of 2.5D chip-package structures[C]//Proceedings of IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA). Piscataway, NJ: IEEE, 2021: 1-8.
|
65 |
|
66 |
关潇男, 谢志辉, 南刚, 等. 3D堆叠芯片硅通孔的电-热-力耦合构形设计[J]. 半导体技术, 2021, 46 (8): 650- 657.
|
67 |
Zhou J Y, Wang Z, Wei C, et al. Three-dimensional simulation of effects of electro-thermo-mechanical multi-physical fields on Cu protrusion and performance of microbump joints in TSVs based high bandwidth memory (HBM) structures[C]//Proceedings of IEEE 70th Electronic Components and Technology Conference (ECTC). Piscataway, NJ: IEEE, 2020: 1659-1664.
|
68 |
|
69 |
|
70 |
|
71 |
|
72 |
蒲菠, 何秋森, 范峻. 时域热传导仿真方法及存储介质: CN202211032489.1[S]. 北京: 中国标准出版社, 2022.
|
73 |
|
74 |
|
75 |
Rheem N, Jeong J, Suh Y J, et al. First heterogeneous and monolithic 3D (HM3D) integration of InGaAs HEMTs and InP/InGaAs DHBTs on Si CMOS for next-generation wireless communication[C]//Proceedings of IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits). Piscataway, NJ: IEEE, 2024: 1-2.
|
76 |
|
77 |
Do Nascimento V C, Hwang S, Smith M J, et al. Multiphysics-informed ML-assisted chiplet floorplanning for heterogeneous integration[C]//Proceedings of IEEE 33rd Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS). Piscataway, NJ: IEEE, 2024: 1-3.
|
78 |
Naeim M, Oprins H, Das S, et al. Thermal analysis of 3D stacking and BEOL technologies with functional partitioning of many-core RISC-V SoC[C]//Proceedings of IEEE Computer Society Annual Symposium on VLSI (ISVLSI). Piscataway, NJ: IEEE, 2024: 33-38.
|
79 |
Choy J H, Moreau S, Brunet-Manquat C, et al. Warpage study by employing an advanced simulation methodology for assessing chip package interaction effects[C]//Proceedings of the 2024 International Symposium on Physical Design. New York: ACM, 2024: 85-90.
|
80 |
Muslu A M, Smet V, Joshi Y. Multi-physics modeling of a power electronics package with integrated cooling[C]//Proceedings of 27th International Workshop on Thermal Investigations of ICs and Systems (THERMINIC). Piscataway, NJ: IEEE, 2021: 1-6.
|
/
〈 |
|
〉 |