本刊专稿

《地外原位资源利用差距评估报告》解析

  • 周诚 , 1, 2 ,
  • 程杉杉 1, 2 ,
  • 高玉月 1, 2 ,
  • 周燕 1, 2
展开
  • 1. 华中科技大学国家数字建造技术创新中心, 武汉 430074
  • 2. 华中科技大学土木与水利工程学院, 武汉 430074

周诚,教授,研究方向为地外建造,电子信箱:

收稿日期: 2023-12-18

  网络出版日期: 2025-02-19

基金资助

中国工程院战略研究与咨询项目(2023-JB-09-10)

中国工程院战略研究与咨询项目(2023-XZ-90)

国家重点研发计划项目(2021YFF0500300)

国家重点研发计划项目(2023YFB3711300)

版权

版权所有,未经授权,不得转载。

Analysis of the "ISRU Gap Assessment Report" by the International Space Exploration Coordination Group

  • Cheng ZHOU , 1, 2 ,
  • Shanshan CHENG 1, 2 ,
  • Yuyue GAO 1, 2 ,
  • Yan ZHOU 1, 2
Expand
  • 1. National Center of Technology Innovation for Digital Construction, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2. School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

Received date: 2023-12-18

  Online published: 2025-02-19

Copyright

All rights reserved. Unauthorized reproduction is prohibited.

摘要

《地外原位资源利用差距评估报告》是国际空间探索协调组(ISECG)定期更新的关于全球太空探索任务的汇总文件,旨在推动全球太空探索与原位资源利用(ISRU)的可持续性。首先,基于ISRU的总体目标与关键结构分解,总结了目前针对ISRU技术、试验测试设备以及星壤模拟物3方面开展的评估工作,并进行归类比较。其次,通过重点解析此报告的ISRU差距评估内容,依次对各参与国当前在原位资源勘查、原位资源采集和预处理、生产消耗品的资源加工、生产建造和制造原料的资源加工、月面原位建造、地外空间制造6大关键领域的技术研究重心与优势展开具体的分析。最后,提出了基于解析此报告对ISRU技术的多学科融合研究、高保真极端环境模拟平台建设以及结合深空探测需求推进高水平ISRU任务实施的展望。

本文引用格式

周诚 , 程杉杉 , 高玉月 , 周燕 . 《地外原位资源利用差距评估报告》解析[J]. 科技导报, 2025 , 43(2) : 22 -33 . DOI: 10.3981/j.issn.1000-7857.2023.12.01890

1
Sanders G B , Larson W E . Final review of analog field campaigns for in situ resource utilization technology and capability maturation[J]. Advances in Space Research, 2015, 55 (10): 2381- 2404.

DOI

2
Kornuta D , Abbud-Madrid A , Atkinson J , et al. Commercial lunar propellant architecture: A collaborative study of lunar propellant production[J]. Reach, 2019, 13: 100026.

DOI

3
Fu Y M , Li L Y , Xie B Z , et al. How to establish a bioregenerative life support system for long-term crewed missions to the moon or Mars[J]. Astrobiology, 2016, 16 (12): 925- 936.

DOI

4
Lavoie T, Spudis P D. The purpose of human spaceflight and a lunar architecture to explore the potential of resource utilization[C] //AIAA Space Forum 2016, California, USA: SPACE 2016 Conference & Exposition, 2016: 5526.

5
Hecht M , Hoffman J , Rapp D , et al. Mars oxygen ISRU experiment (MOXIE)[J]. Space Science Reviews, 2021, 217 (1): 9.

DOI

6
Crawford I A . Lunar resources: A review[J]. Progress in Physical Geography: Earth and Environment, 2015, 39 (2): 137- 167.

DOI

7
In-Situ Resource Utilisation Gap Assessment Report[R]. Quebec: The International Space Exploration Coordination Group, 2021.

8
王赤, 时蓬, 白青江, 等. 2022年空间科学与深空探测热点回眸[J]. 科技导报, 2023, 41 (1): 79- 102.

DOI

9
Global exploration roadmap: Lunar surface exploration scenario update[R]. ISECG, 2020.

10
Zhou C , Chen R , Xu J , et al. In-situ construction method for lunar habitation: Chinese Super Mason[J]. Automation in Construction, 2019, 104: 66- 79.

DOI

11
Jayathilake B A C S , Ilankoon I M S K , Dushyantha M N P . Assessment of significant geotechnical parameters for lunar regolith excavations[J]. Acta Astronautica, 2022, 196: 107- 122.

DOI

12
Starr S O , Muscatello A C . Mars in situ resource utilization: A review[J]. Planetary and Space Science, 2020, 182: 104824.

DOI

13
Oh K , Chen T , Kou R , et al. Ultralow-binder-content thermoplastic composites based on lunar soil simulant[J]. Advances in Space Research, 2020, 66 (9): 2245- 2250.

DOI

14
Zhang P , Dai W , Niu R , et al. Overview of the lunar in situ resource utilization techniques for future lunar missions[J]. Space: Science & Technology, 2023, 3: 37.

15
田小永, 李涤尘, 卢秉恒. 空间3D打印技术现状与前景[J]. 载人航天, 2016, 22 (4): 471- 476.

DOI

文章导航

/