特色专题:新型显示科学与技术专题

Micro-LED新型显示技术的现状、挑战及展望

  • 庄喆 , 1, 2 ,
  • 刘斌 , 1, 3, *
展开
  • 1. 南京大学江苏省光电信息功能材料重点实验室, 南京 210093
  • 2. 南京大学集成电路学院, 苏州 215163
  • 3. 南京大学电子科学与工程学院, 南京 210093
刘斌(通信作者),教授,研究方向为宽禁带半导体材料与器件,电子信箱:

庄喆,助理教授,研究方向为宽禁带半导体材料与器件,电子信箱:

收稿日期: 2024-08-20

  网络出版日期: 2025-02-19

版权

版权所有,未经授权,不得转载。

Micro-LED display technology: Present status, challenges, and future perspectives

  • Zhe ZHUANG , 1, 2 ,
  • Bin LIU , 1, 3, *
Expand
  • 1. Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, Nanjing University, Nanjing 210093, China
  • 2. School of Integrated Circuits, Nanjing University, Suzhou 215163, China
  • 3. School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China

Received date: 2024-08-20

  Online published: 2025-02-19

Copyright

All rights reserved. Unauthorized reproduction is prohibited.

摘要

微型发光二极管(Micro-LED)具有较好的稳定性,是当前高亮显示应用的最佳选择,其具有高对比度、低响应时间、宽工作温区、低能耗和广视角等优势,成为当前产业界和学术界比较看好的新型显示技术。综述了Micro-LED新型显示技术的原理,对比其与现有技术的性能,从材料、器件、集成和成本良率等几个角度探讨了Micro-LED新型显示技术的关键技术挑战。未来3~5年内,Micro-LED显示技术仍然会在材料、器件、集成等技术方面存在技术创新和重大突破的关键机会,该技术支撑着未来显示产业的发展,也是中国科技创新引领全球的一次重要科技革命。建议鼓励创新,营造良好的科技创新环境,通过产学研合作解决当前Micro-LED新型显示技术的关键问题。同时发挥市场和社会资本的作用,引导产业遵循技术发展和商业发展规律。Micro-LED显示产业尽管仍面临技术挑战,但增强现实等近眼显示设备的推出,可能彻底革新现有的显示产品形态,Micro-LED显示产业市场将可能迎来爆发式增长。

本文引用格式

庄喆 , 刘斌 . Micro-LED新型显示技术的现状、挑战及展望[J]. 科技导报, 2025 , 43(2) : 42 -51 . DOI: 10.3981/j.issn.1000-7857.2024.08.01026

1
欧阳钟灿. 新型显示技术在崛起[N]. 人民日报, 2022-09-13(20).

2
History of display technology[EB/OL]. [2024-01-20]. https://en.wikipedia.org/wiki/History_of_display_technology.

3
Huang Y G , Hsiang E L , Deng M Y , et al. Mini-LED, micro-LED and OLED displays: Present status and future perspectives[J]. Light, Science & Applications, 2020, 9: 105.

4
Hsiang E L , Yang Z Y , Yang Q , et al. Prospects and challenges of mini-LED, OLED, and micro-LED displays[J]. Journal of the Society for Information Display, 2021, 29 (6): 446- 465.

DOI

5
Tang C W , VanSlyke S A . Organic electroluminescent diodes[J]. Applied physics letters, 1987, 51 (12): 913- 915.

DOI

6
LG signature z988 inch class 8k smart OLED TV w/AI ThinQ (87.6''Diag)[EB/OL]. [2024-01-20]. https://www.lg.com/us/tvs/lg-OLED88Z9PUA-signature-oled-8k-tv.

7
Behrman K , Kymissis I . Micro light-emitting diodes[J]. Nature Electronics, 2022, 5 (9): 564- 573.

DOI

8
Gou F W , Hsiang E L , Tan G J , et al. Angular color shift of micro-LED displays[J]. Optics Express, 2019, 27 (12): 746.

DOI

9
Gou F W , Hsiang E L , Tan G J , et al. High performance color-converted micro-LED displays[J]. Journal of the Society for Information Display, 2019, 27 (4): 199- 206.

DOI

10
Lin C C , Wu Y R , Kuo H C , et al. The micro-LED roadmap: status quo and prospects[J]. Journal of Physics: Photonics, 2023, 5 (4): 042502.

DOI

11
Zhuang Z , Guo X , Liu B , et al. High color rendering index hybrid Ⅲ nitride/nanocrystals white lightemitting diodes[J]. Advanced Functional Materials, 2016, 26 (1): 36- 43.

DOI

12
Liu B , Chen D J , Lu H , et al. Hybrid light emitters and UV solar-blind avalanche photodiodes based on Ⅲ-nitride semiconductors[J]. Advanced Materials, 2020, 32 (27): 1904354.

DOI

13
Park J , Choi J H , Kong K , et al. Electrically driven mid-submicrometre pixelation of InGaN micro-light-emitting diode displays for augmented-reality glasses[J]. Nature Photonics, 2021, 15: 449- 455.

DOI

14
Um J G , Jeong D Y , Jung Y , et al. Active-matrix GaN μ-LED display using oxide thin-film transistor backplane and flip chip LED bonding[J]. Advanced Electronic Materials, 2019, 5 (3): 1800617.

DOI

15
Yadavalli K, Chuang C L, El-Ghoroury H S. Monolithic and heterogeneous integration of RGB micro-LED arrays with pixel-level optics array and CMOS image processor to enable small form-factor display applications[C] //Proceedings of Optical Architectures for Displays and Sensing in Augmented, Virtual, and Mixed Reality (AR, VR, MR). SPIE, 2020: 746.

16
Gou F W , Chen H W , Li M C , et al. Motion-blur-free LCD for high-resolution virtual reality displays[J]. Journal of the Society for Information Display, 2018, 26 (4): 223- 228.

DOI

17
He J , Chen H W , Chen H , et al. Hybrid downconverters with green perovskite-polymer composite films for wide color gamut displays[J]. Optics Express, 2017, 25 (11): 12915- 12925.

DOI

18
Hosoumi S , Yamaguchi T , Inoue H , et al. 3-4:Ultra-wide color gamut OLED display using a deep-red phosphorescent device with high efficiency, long life, thermal stability, and absolute BT.2020 red chromaticity[J]. SID Symposium Digest of Technical Papers, 2017, 48 (1): 13- 16.

DOI

19
Zhuang Z , Iida D , Velazquez-Rizo M , et al. 630-nm red InGaN micro-light-emitting diodes (20μm×20μm) exceeding 1 mW/mm2 for full-color micro-displays[J]. Photonics Research, 2021, 9 (9): 1796.

DOI

20
Jin S X , Li J , Li J Z , et al. GaN microdisk light emitting diodes[J]. Applied physics letters, 2000, 76 (5): 631- 633.

DOI

21
Jiang H X , Jin S X , Li J , et al. Ⅲ-nitride blue microdisplays[J]. Applied physics letters, 2001, 78 (9): 1303- 1305.

DOI

22
Day J, Li J, Lie D Y C, et al. Ⅲ-nitride full-scale high-resolution microdisplays[J]. 2011, 99(3): 031116.

23
Crystal LED[EB/OL]. [2024-01-20]. https://en.wikipedia.org/wiki/Crystal_LED.

24

25
Wong M S , Nakamura S , DenBaars S P . Review-progress in high performance Ⅲ-nitride micro-light-emitting diodes[J]. ECS Journal of Solid State Science and Technology, 2019, 9 (1): 015012.

26
Iida D , Ohkawa K . Recent progress in red light-emitting diodes by Ⅲ-nitride materials[J]. Semiconductor Science and Technology, 2022, 37 (1): 013001.

DOI

27
Bulashevich K A , Karpov S Y . Impact of surface recombination on efficiency of Ⅲ-nitride light-emitting diodes[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2016, 10 (6): 480- 484.

DOI

28
Hwang J I , Hashimoto R , Saito S , et al. Development of InGaN-based red LED grown on (0001) polar surface[J]. Applied Physics Express, 2014, 7 (7): 071003.

DOI

29
Pasayat S S , Gupta C , Wong M S , et al. Demonstration of ultra-small (< 10μm)632 nm red InGaN micro-LEDs with useful on-wafer external quantum efficiency (> 0.2%) for mini-displays[J]. Applied Physics Express, 2020, 14 (1): 011004.

30
Li P P, Li H J, Zhang H J, et al. Size-independent peak external quantum efficiency (>2%) of InGaN red micro-light-emitting diodes with an emission wavelength over 600 nm[J]. 2021, 119(8): 081102.

31
Iida D , Zhuang Z , Kirilenko P , et al. 633-nm InGaN-based red LEDs grown on thick underlying GaN layers with reduced in-plane residual stress[J]. Applied physics letters, 2020, 116 (16): 162101.

DOI

32
Iida D , Zhuang Z , Kirilenko P , et al. Demonstration of low forward voltage InGaN-based red LEDs[J]. Applied Physics Express, AIP Advances, 2020, 13 (3): 031001.

33
Iida D , Kirilenko P , Velazquez-Rizo M , et al. Demonstration of 621-nm-wavelength InGaN-based single-quantum-well LEDs with an external quantum efficiency of 4.3% at 10.1 A/cm2[J]. AIP Adoances, 2022, 12 (6): 065125.

34
Mitchell B , Dierolf V , Gregorkiewicz T , et al. Perspective: Toward efficient GaN-based red light emitting diodes using europium doping[J]. Journal of Applied Physics, 2018, 123 (16): 160901.

DOI

35
Bi Z X , Lenrick F , Colvin J , et al. InGaN platelets: Synthesis and applications toward green and red light-emitting diodes[J]. Nano Letters, 2019, 19 (5): 2832- 2839.

DOI

36
Bi Z X , Lu T P , Colvin J , et al. Realization of ultrahigh quality InGaN platelets to be used as relaxed templates for red micro-LEDs[J]. ACS Applied Materials & Interfaces, 2020, 12 (15): 17845- 17851.

37
Sang Y M , Zhuang Z , Xing K , et al. Optimizing Al composition in barriers for InGaN amber micro-LEDs with high wall-plug efficiency[J]. IEEE Electron Device Letters, 2024, 45 (1): 76- 79.

DOI

38
Zhang S N , Zhang J L , Gao J D , et al. Efficient emission of InGaN-based light-emitting diodes: Toward orange and red[J]. Photonics Research, 2020, 8 (11): 1671.

DOI

39
Chen Z Y , Sheng B W , Liu F , et al. High-efficiency InGaN red mini-LEDs on sapphire toward full-color nitride displays: Effect of strain modulation[J]. Advanced Functional Materials, 2023, 33 (26): 2300042.

DOI

40
Yu L M , Hao Z B , Luo Y , et al. Improving performances of ultra-small size (1~20μm) InGaN red micro-LEDs by growing on freestanding GaN substrates[J]. Applied physics letters, 2023, 123 (23): 232106.

DOI

41
Sheen M , Ko Y , Kim D U , et al. Highly efficient blue InGaN nanoscale light-emitting diodes[J]. Nature, 2022, 608 (7921): 56- 61.

DOI

42
Bai J , Cai Y F , Feng P , et al. Ultrasmall, ultracompact and ultrahigh efficient InGaN micro light emitting diodes (μLEDs) with narrow spectral line width[J]. ACS Nano, 2020, 14 (6): 6906- 6911.

DOI

43
Zhuang Z , Iida D , Ohkawa K . Ultrasmall and ultradense InGaN-based RGB monochromatic micro-light-emitting diode arrays by pixilation of conductive p-GaN[J]. Photonics Research, 2021, 9 (12): 2429.

DOI

44
Zhuang Z , Iida D , Velazquez-Rizo M , et al. Ultra-small InGaN green micro-light-emitting diodes fabricated by selective passivation of p-GaN[J]. Optics Letters, 2021, 46 (20): 5092- 5095.

DOI

45
Meng W Q , Xu F F , Yu Z H , et al. Three-dimensional monolithic micro-LED display driven by atomically thin transistor matrix[J]. Nature Nanotechnology, 2021, 16 (11): 1231- 1236.

DOI

46
Hwangbo S , Hu L , Hoang A T , et al. Wafer-scale monolithic integration of full-colour micro-LED display using MoS2 transistor[J]. Nature Nanotechnology, 2022, 17 (5): 500- 506.

DOI

47
Chang W , Kim J , Kim M , et al. Concurrent self-assembly of RGB microLEDs for next-generation displays[J]. Nature, 2023, 617 (7960): 287- 291.

DOI

48
Xu F F , Tao T , Zhang D Q , et al. Wafer-scale monolithic integration of blue micro-light-emitting diodes and green/red quantum dots for full-color displays[J]. IEEE Electron Device Letters, 2023, 44 (8): 1320- 1323.

DOI

49
Shin J , Kim H , Sundaram S , et al. Vertical full-colour micro-LEDs via 2D materials-based layer transfer[J]. Nature, 2023, 614 (7946): 81- 87.

DOI

50
Saito T , Hasegawa N , Imura K , et al. RGB monolithic GaInN-based μLED arrays connected via tunnel junctions[J]. Applied Physics Express, 2023, 16 (8): 084001.

DOI

文章导航

/