特色专题:新型显示科学与技术专题

印刷薄膜晶体管材料与器件技术研究进展

  • 许伟 , 1, 2 ,
  • 黄湘兰 1, 2 ,
  • 彭俊彪 , 1, 2, *
展开
  • 1. 华南理工大学, 发光材料与器件国家重点实验室, 广州 510641
  • 2. 华南理工大学高分子光电材料及器件研究所, 广州 510641
彭俊彪(通信作者),教授,研究方向为有机/高分子发光与显示,电子信箱:

许伟,高级实验师,研究方向为印刷光电材料与器件,电子信箱:

收稿日期: 2024-08-20

  网络出版日期: 2025-02-19

基金资助

广东省重点领域研发计划项目(2022B0303010001)

版权

版权所有,未经授权,不得转载。

Printed thin film transistor materials and device technology

  • Wei XU , 1, 2 ,
  • Xianglan HUANG 1, 2 ,
  • Junbiao PENG , 1, 2, *
Expand
  • 1. State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510641, China
  • 2. Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510641, China

Received date: 2024-08-20

  Online published: 2025-02-19

Copyright

All rights reserved. Unauthorized reproduction is prohibited.

摘要

聚焦溶液印刷工艺制备薄膜晶体管(TFT)技术,综述了近年来印刷TFT材料与器件研究成果。TFT是平板显示器件的核心共有技术,决定了平板显示器的显示效果与显示质量。从TFT器件中的材料及工艺出发,分别介绍可印刷的导电材料、半导体材料和绝缘层材料,以及印刷制备TFT技术的发展现状。要实现印刷TFT技术的商业应用,还面临着诸如可印刷的高性能墨水材料开发、高均匀性薄膜印刷沉积工艺、较低的接触电阻、印刷TFT集成制备技术,以及如何实现印刷TFT在偏压、光辐照、温度等条件下的长期稳定性等问题。提出了随着新材料的进一步开发和印刷技术的发展,印刷技术将为实现低成本制造TFT提供一条有前景的途径。

本文引用格式

许伟 , 黄湘兰 , 彭俊彪 . 印刷薄膜晶体管材料与器件技术研究进展[J]. 科技导报, 2025 , 43(2) : 52 -61 . DOI: 10.3981/j.issn.1000-7857.2024.08.01028

1
Fortunato E , Barquinha P , Martins R . Oxide semiconductor thin-film transistors: A review of recent advances[J]. Advanced Materials, 2012, 24 (22): 2945- 2986.

DOI

2
Abbel R , Galagan Y , Groen P . Roll-to-roll fabrication of solution processed electronics[J]. Advanced Engineering Materials, 2018, 20 (8): 1- 30.

3
Chung S , Cho K , Lee T . Recent progress in inkjet-printed thin-film transistors[J]. Advanced Science, 2019, 6 (6): 1801445.

DOI

4
Wu B Z , Liao R , Liu Y R . Research progress of metal-oxide thin-film transistors prepared by solution method[J]. Semiconductor Technology, 2018, 43 (5): 321- 34.

5
Acharya V , Agarwal K , Mondal S . Electronic materials for solution-processed TFTs[J]. Materials Research Express, 2023, 10 (8): 082002.

DOI

6
钟云肖, 谢宇, 周尚雄, 等. 溶液法氧化物薄膜晶体管的印刷制备[J]. 液晶与显示, 2017, 32 (6): 443- 454.

7
Lee Y W , Choi S H , Lee J S , et al. Investigation of amorphous IGZO TFT employing Ti/Cu source/drain and SiNx passivation[J]. MRS Online Proceedings Library, 2011, 1321 (1): 1906.

8
Lee Y J , Kim J H , Park J C , et al. Characteristics of AZO electrode with high transmittance in near infrared range[J]. Journal of Nanoscience and Nanotechnology, 2014, 14 (12): 9285- 9288.

DOI

9
Choi J H , Kang S H , Oh H S , et al. Design and characterization of Ga-doped indium tin oxide films for pixel electrode in liquid crystal display[J]. Thin Solid Films, 2013, 527: 141- 146.

DOI

10
Hu S B , Lu K K , Ning H L , et al. Effect of ITO serving as a barrier layer for Cu electrodes on performance of a-IGZO TFT[J]. IEEE Electron Device Letters, 2018, 39 (4): 504- 507.

DOI

11
Bax D V , Tipa R S , Kondyurin A , et al. Cell patterning via linker-free protein functionalization of an organic conducting polymer (polypyrrole) electrode[J]. Acta Biomaterialia, 2012, 8 (7): 2538- 2548.

DOI

12
Secor E B , Smith J , Marks T J , et al. High-performance inkjet-printed indium-Gallium-zinc-oxide transistors enabled by embedded, chemically stable graphene electrodes[J]. ACS Applied Materials & Interfaces, 2016, 8 (27): 17428- 17434.

13
Yang C G , Fang Z Q , Ning H L , et al. Amorphous InGaZnO thin film transistor fabricated with printed silver salt ink source/drain electrodes[J]. Applied Sciences, 2017, 7 (8): 844.

14
Wu J T , Hsu S L C , Tsai M H , et al. Direct inkjet printing of silver nitrate/poly (N-vinyl-2-pyrrolidone) inks to fabricate silver conductive lines[J]. The Journal of Physical Chemistry C, 2010, 114 (10): 4659- 4662.

15
Huang Q J , Shen W F , Song W J . Synthesis of colourless silver precursor ink for printing conductive patterns on silicon nitride substrates[J]. Applied Surface Science, 2012, 258 (19): 7384- 7388.

16
Dearden A L , Smith P J , Shin D Y , et al. A low curing temperature silver ink for use in ink-jet printing and subsequent production of conductive tracks[J]. Macromolecular Rapid Communications, 2005, 26 (4): 315- 318.

17
Vaseem M , McKerricher G , Shamim A . Robust design of a particle-free silver-organo-complex ink with high conductivity and inkjet stability for flexible electronics[J]. ACS Applied Materials & Interfaces, 2016, 8 (1): 177- 186.

18
Kell A J , Paquet C , Mozenson O , et al. Versatile molecular silver ink platform for printed flexible electronics[J]. ACS Applied Materials & Interfaces, 2017, 9 (20): 17226- 17237.

19
Campbell T , Kalia R K , Nakano A , et al. Dynamics of oxidation of aluminum nanoclusters using variable charge molecular-dynamics simulations on parallel computers[J]. Physical Review Letters, 1999, 82 (24): 4866- 4869.

20
Foley T J , Johnson C E , Higa K T . Inhibition of oxide formation on aluminum nanoparticles by transition metal coating[J]. Chemistry of Materials, 2005, 17 (16): 4086- 4091.

21
崔淑媛, 刘军, 吴伟. 金属纳米颗粒导电墨水的制备及其在印刷电子方面的应用[J]. 化学进展, 2015, 27 (10): 1509- 1522.

22
Cioffi N , Ditaranto N , Torsi L , et al. Synthesis, analytical characterization and bioactivity of Ag and Cu nanoparticles embedded in poly-vinyl-methyl-ketone films[J]. Analytical and Bioanalytical Chemistry, 2005, 382 (8): 1912- 1918.

23
Minami T . Transparent conducting oxide semiconductors for transparent electrodes[J]. Semiconductor Science and Technology, 2005, 20 (4): 35- 44.

24
Das N , Biswas P K . Synthesis and characterization of smoke-like porous Sol-gel indium tin oxide coatings on glass[J]. Journal of Materials Science, 2012, 47 (1): 289- 298.

25
Hong S J, Kim Y H, Han J I. Development of ultrafine indium Tin Oxide (ITO) nanoparticle for ink jet printing by low temperature synthetic method[C] //Proceedings of IEEE Nanotechnology Materials and Devices Conference. Piscataway, New Jersey: IEEE, 2006: 464-465.

26
Oberlin A , Endo M , Koyama T . Filamentous growth of carbon through benzene decomposition[J]. Journal of Crystal Growth, 1976, 32 (3): 335- 349.

27
Iijima S . Helical microtubules of graphitic carbon[J]. Nature, 1991, 354: 56- 58.

28
Ebbesen T W , Lezec H J , Hiura H , et al. Electrical conductivity of individual carbon nanotubes[J]. Nature, 1996, 382 (6586): 54- 56.

29
Heywang G , Jonas F . Poly (alkylenedioxythiophene) s—New, very stable conducting polymers[J]. Advanced Materials, 1992, 4 (2): 116- 118.

30
Groenendaal L , Jonas F , Freitag D , et al. Poly (3, 4-ethylenedioxythiophene) and its derivatives: Past, present, and future[J]. Advanced Materials, 2000, 12 (7): 481- 494.

31
Kim J Y , Jung J H , Lee D E , et al. Enhancement of electrical conductivity of poly (3, 4-ethylenedioxythiophene)/poly (4-styrenesulfonate) by a change of solvents[J]. Synthetic Metals, 2002, 126 (2/3): 311- 316.

32
Ouyang J , Xu Q , Chu C , et al. On the mechanism of conductivity enhancement in through solvent treatment[J]. Polymer (Guildf), 2004, 45: 8443- 8450.

33
Crispin X , Jakobsson F L E , Crispin A , et al. The origin of the high conductivity of (PEDOT-PSS) plastic electrodes[J]. Chemistry of Materials, 2006, (4): 4354- 4360.

34
Nardes A M , Janssen R A J , Kemerink M . A morphological model for the solvent-enhanced conductivity of PEDOT: PSS thin films[J]. Advanced Functional Materials, 2008, 18 (6): 865- 871.

35
Reyes-Reyes M , Cruz-Cruz I , López-Sandoval R . Enhancement of the electrical conductivity in PEDOT: PSS films by the addition of dimethyl sulfate[J]. The Journal of Physical Chemistry C, 2010, 114 (47): 20220- 20224.

36
Fan B H , Mei X G , Ouyang J Y . Significant conductivity enhancement of conductive poly (3, 4-ethylenedioxythiophene): Poly (styrenesulfonate) films by adding anionic surfactants into polymer solution[J]. Macromolecules, 2008, 41 (16): 5971- 5973.

37
Xia Y J , Ouyang J Y . Salt-induced charge screening and significant conductivity enhancement of conducting poly (3, 4-ethylenedioxythiophene): Poly (styrenesulfonate)[J]. Macromolecules, 2009, 42 (12): 4141- 4147.

38
Xia Y J , Ouyang J Y . Anion effect on salt-induced conductivity enhancement of poly (3, 4-ethylenedioxythiophene): Poly (styrenesulfonate) films[J]. Organic Electronics, 2010, 11 (6): 1129- 1135.

39
Kim N , Kee S , Lee S H , et al. Highly conductive PEDOT: PSS nanofibrils induced by solution-processed crystallization[J]. Advanced Materials, 2014, 26 (14): 2268-2272, 2109.

40
Koezuka H , Tsumura A , Ando T . Field-effect transistor with polythiophene thin film[J]. Synthetic Metals, 1987, 18 (1-3): 699- 704.

41
Pierre A , Sadeghi M , Payne M M , et al. All-printed flexible organic transistors enabled by surface tension-guided blade coating[J]. Advanced Materials, 2014, 26 (32): 5722- 5727.

42
Giri G , Verploegen E , Mannsfeld S C B , et al. Tuning charge transport in solution-sheared organic semiconductors using lattice strain[J]. Nature, 2011, 480 (7378): 504- 508.

43
Diao Y , Tee B C K , Giri G , et al. Solution coating of large-area organic semiconductor thin films with aligned single-crystalline domains[J]. Nature Materials, 2013, 12 (7): 665- 671.

44
Luo C , Kyaw A K K , Perez L A , et al. General strategy for self-assembly of highly oriented nanocrystalline semiconducting polymers with high mobility[J]. Nano Letters, 2014, 14 (5): 2764- 2771.

45
Huang Y Y , Chiang S C , Chen Y H , et al. 12-3:A 5.5 inch FFS-LCD driven by soluble-metal-oxide and implementation in production line through BCE TFT structure[J]. SID Symposium Digest of Technical Papers, 2018, 49 (1): 125- 127.

46
Xu W Y , Wang H , Xie F Y , et al. Facile and environmentally friendly solution-processed aluminum oxide dielectric for low-temperature, high-performance oxide thin-film transistors[J]. ACS Applied Materials & Interfaces, 2015, 7 (10): 5803- 5810.

47
Esro M , Vourlias G , Somerton C , et al. High-mobility ZnO thin film transistors based on solution-processed hafnium oxide gate dielectrics[J]. Advanced Functional Materials, 2015, 25 (1): 134- 141.

48
Hur J S , Kim J O , Kim H A , et al. Stretchable polymer gate dielectric by ultraviolet-assisted hafnium oxide doping at low temperature for high-performance indium Gallium tin oxide transistors[J]. ACS Applied Materials & Interfaces, 2019, 11 (24): 21675- 21685.

49
Lee J , Hassan S Z , Lee S J , et al. Azide-functionalized ligand enabling organic-inorganic hybrid dielectric for high-performance solution-processed oxide transistors[J]. Nature Communications, 2022, 13 (1): 7021.

50
Sirringhaus H , Kawase T , Friend R H , et al. High-resolution inkjet printing of all-polymer transistor circuits[J]. Science, 2000, 290 (5499): 2123- 2126.

51
Lee D H , Chang Y J , Herman G , et al. A general route to printable high-mobility transparent amorphous oxide semiconductors[J]. Advanced Materials, 2007, 19 (6): 843- 847.

52
Jang J , Kang H , Chakravarthula H C N , et al. Fully inkjet-printed transparent oxide thin film transistors using a fugitive wettability switch[J]. Advanced Electronic Materials, 2015, 1 (7): 1500086.

53
Li Y Z , Lan L F , Sun S , et al. All inkjet-printed metal-oxide thin-film transistor array with good stability and uniformity using surface-energy patterns[J]. ACS Applied Materials & Interfaces, 2017, 9 (9): 8194- 8200.

文章导航

/