特色专题:新型显示科学与技术专题

量子点及其在显示领域研究进展

  • 李彦松 ,
  • 刘衡 ,
  • 赵泽邦 ,
  • 赵谡玲 , * ,
  • 徐征
展开
  • 北京交通大学发光与光信息技术教育部重点实验室, 北京 100044
赵谡玲(通信作者),教授,研究方向为发光与显示,电子信箱:

李彦松,博士研究生,研究方向为发光与显示,电子信箱:

收稿日期: 2024-08-24

  网络出版日期: 2025-02-19

基金资助

国家自然科学基金面上项目(12474399)

版权

版权所有,未经授权,不得转载。

Quantum dots and their applications in the field of displays

  • Yansong LI ,
  • Heng LIU ,
  • Zebang ZHAO ,
  • Suling ZHAO , * ,
  • Zheng XU
Expand
  • Key Laboratory of Luminescence and Optical Information (Beijing Jiaotong University), Ministry of Education, Beijing 100044, China

Received date: 2024-08-24

  Online published: 2025-02-19

Copyright

All rights reserved. Unauthorized reproduction is prohibited.

摘要

量子点以其高色纯度、高效率、可调光谱、广泛的光谱覆盖范围,以及低成本的溶液加工等诸多优点,成为新兴的显示领域材料。然而,无论是以光致发光为主的显示技术,还是发光二极管(QLEDs)显示技术,都面临着一些挑战,如器件寿命低、蓝光效率低、镉基量子点毒性、图案化困难等。总结了量子点的物理特性、量子点的种类、发光机制及在显示领域的研究进展,介绍了镉基量子点QLEDs的研究进展,报道了最新三基色QLEDs的发光亮度、效率和器件寿命。总结了量子点图案化技术,分析了不同技术的优势和劣势。为进一步提高量子点在显示领域的应用,科研人员需要不断开拓和创新,攻克量子点的应用难题,实现自发光量子点显示。

本文引用格式

李彦松 , 刘衡 , 赵泽邦 , 赵谡玲 , 徐征 . 量子点及其在显示领域研究进展[J]. 科技导报, 2025 , 43(2) : 62 -89 . DOI: 10.3981/j.issn.1000-7857.2024.08.01030

1
García de Arquer F P , Talapin D V , Klimov V I , et al. Semiconductor quantum dots: Technological progress and future challenges[J]. Science, 2021, 373 (6555): eaaz8541.

DOI

2
Ekimov A I , Onushchenko A A . Quantum size effect in three-dimensional microscopic semiconductor crystals[J]. JETP Letters, 2023, 118 (1): S15- S17.

3
Brus L E . A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites[J]. The Journal of Chemical Physics, 1983, 79 (11): 5566- 5571.

DOI

4
Rossetti R , Nakahara S , Brus L E . Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution[J]. The Journal of Chemica Physics, 1983, 79 (2): 1086- 1088.

DOI

5
Murray C B , Norris D J , Bawendi M G . Synthesis and characterization of nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites[J]. Journal of the American Chemical Society, 1993, 115 (19): 8706- 8715.

DOI

6
Pu C D , Dai X L , Shu Y F , et al. Electrochemically-stable ligands bridge the photoluminescence-electroluminescence gap of quantum dots[J]. Nature Communications, 2020, 11 (1): 937.

DOI

7
Chen O , Zhao J , Chauhan V P , et al. Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking[J]. Nature Materials, 2013, 12 (5): 445- 451.

DOI

8
Talapin D V , Mekis I , Götzinger S , et al. CdSe/CdS/ZnS and CdSe/ZnSe/ZnS Core-Shell-Shell nanocrystals[J]. The Journal of Physical Chemistry B, 2004, 108 (49): 18826- 18831.

DOI

9
Shen H B , Cao W R , Shewmon N T , et al. High-efficiency, low turn-on voltage blue-violet quantum-dot-based light-emitting diodes[J]. Nano Letters, 2015, 15 (2): 1211- 1216.

DOI

10
Xu H Y , Song J J , Zhou P H , et al. Dipole-dipole-interaction-assisted self-assembly of quantum dots for highly efficient light-emitting diodes[J]. Nature Photonics, 2024, 18: 186- 191.

DOI

11
Deng Y Z , Peng F , Lu Y , et al. Solution-processed green and blue quantum-dot light-emitting diodes with eliminated charge leakage[J]. Nature Photonics, 2022, 16: 505- 511.

DOI

12
Zhang W J , Li B , Chang C , et al. Stable and efficient pure blue quantum-dot LEDs enabled by inserting an anti-oxidation layer[J]. Nature Communications, 2024, 15 (1): 783.

DOI

13
Chen B , Li D Y , Wang F . InP quantum dots: Synthesis and lighting applications[J]. Small, 2020, 16 (32): e2002454.

DOI

14
Jang E , Kim Y , Won Y H , et al. Environmentally friendly InP-based quantum dots for efficient wide color gamut displays[J]. ACS Energy Letters, 2020, 5 (4): 1316- 1327.

DOI

15
Eren G O , Sadeghi S , Bahmani Jalali H , et al. Cadmium-free and efficient type-Ⅱ InP/ZnO/ZnS quantum dots and their application for LEDs[J]. ACS Applied Materials & Interfaces, 2021, 13 (27): 32022- 32030.

16
Won Y H , Cho O , Kim T , et al. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes[J]. Nature, 2019, 575 (7784): 634- 638.

DOI

17
Bian Y Y , Yan X H , Chen F , et al. Efficient green InP-based QD-LED by controlling electron injection and leakage[J]. Nature, 2024, 635 (8040): 854- 859.

DOI

18
Milstein T J , Kroupa D M , Gamelin D R . Picosecond quantum cutting generates photoluminescence quantum yields over 100% in ytterbium-doped CsPbCl3 nanocrystals[J]. Nano Letters, 2018, 18 (6): 3792- 3799.

DOI

19
Protesescu L , Yakunin S , Bodnarchuk M I , et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X=Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut[J]. Nano Letters, 2015, 15 (6): 3692- 3696.

DOI

20
Yakunin S , Protesescu L , Krieg F , et al. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites[J]. Nature Communications, 2015, 6: 8056.

DOI

21
Dutta A , Dutta S K , Das Adhikari S , et al. Tuning the size of CsPbBr3 nanocrystals: All at one constant temperature[J]. ACS Energy Letters, 2018, 3 (2): 329- 334.

DOI

22
Liang Z Q , Zhao S L , Xu Z , et al. Shape-controlled synthesis of all-inorganic CsPbBr3 perovskite nanocrystals with bright blue emission[J]. ACS Applied Materials & Interfaces, 2016, 8 (42): 28824- 28830.

23
Li H M , Lin H , Ouyang D , et al. Efficient and stable red perovskite light-emitting diodes with operational stability > 300 H[J]. Advanced Materials, 2021, 33 (15): e2008820.

DOI

24
Wang K , Lin Z Y , Zhang Z H , et al. Suppressing phase disproportionation in quasi-2D perovskite light-emitting diodes[J]. Nature Communications, 2023, 14 (1): 397.

DOI

25
Bai W H , Xuan T T , Zhao H Y , et al. Perovskite light-emitting diodes with an external quantum efficiency exceeding 30[J]. Advanced Materials, 2023, 35 (39): e2302283.

DOI

26
Guo B B , Lai R C , Jiang S J , et al. Ultrastable near-infrared perovskite light-emitting diodes[J]. Nature Photonics, 2022, 16: 637- 643.

DOI

27
Bae W K , Brovelli S , Klimov V I . Spectroscopic insights into the performance of quantum dot light-emitting diodes[J]. MRS Bulletin, 2013, 38 (9): 721- 730.

DOI

28
Shirasaki Y , Supran G J , Bawendi M G , et al. Emergence of colloidal quantum-dot light-emitting technologies[J]. Nature Photonics, 2013, 7: 13- 23.

DOI

29
Colvin V L , Schlamp M C , Alivisatos A P . Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer[J]. Nature, 1994, 370: 354- 357.

DOI

30
Jang E , Jang H . Review: Quantum dot light-emitting diodes[J]. Chemical Reviews, 2023, 123 (8): 4663- 4692.

DOI

31
Schlamp M C , Peng X G , Alivisatos A P . Improved efficiencies in light emitting diodes made with CdSe (CdS) core/shell type nanocrystals and a semiconducting polymer[J]. Journal of Applied Physics, 1997, 82 (11): 5837- 5842.

DOI

32
Niu Y H , Munro A , Cheng Y J , et al. Improved performance from multilayer quantum dot light-emitting diodes via thermal annealing of the quantum dot layer[J]. Advanced Materials, 2007, 19 (20): 3371- 3376.

DOI

33
Qian L , Zheng Y , Xue J G , et al. Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures[J]. Nature Photonics, 2011, 5: 543- 548.

DOI

34
Mashford B S , Stevenson M , Popovic Z , et al. High-efficiency quantum-dot light-emitting devices with enhanced charge injection[J]. Nature Photonics, 2013, 7: 407- 412.

DOI

35
Dai X L , Zhang Z X , Jin Y Z , et al. Solution-processed, high-performance light-emitting diodes based on quantum dots[J]. Nature, 2014, 515 (7525): 96- 99.

DOI

36
Cao W R , Xiang C Y , Yang Y X , et al. Highly stable QLEDs with improved hole injection via quantum dot structure tailoring[J]. Nature Communications, 2018, 9 (1): 2608.

DOI

37
Shen H B , Gao Q , Zhang Y B , et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency[J]. Nature Photonics, 2019, 13: 192- 197.

DOI

38
Lee T , Kim B J , Lee H , et al. Bright and stable quantum dot light-emitting diodes[J]. Advanced Materials, 2022, 34 (4): e2106276.

DOI

39
Fang Y F , Bai P L , Li J Y , et al. Highly efficient red quantum dot light-emitting diodes by balancing charge injection and transport[J]. ACS Applied Materials & Interfaces, 2022, 14 (18): 21263- 21269.

40
Coe S , Woo W K , Bawendi M , et al. Electroluminescence from single monolayers of nanocrystals in molecular organic devices[J]. Nature, 2002, 420 (6917): 800- 803.

DOI

41
Steckel J S , Snee P , Coe-Sullivan S , et al. Color-saturated green-emitting QD-LEDs[J]. Angewandte Chemie (International Ed), 2006, 45 (35): 5796- 5799.

DOI

42
Yang Y X , Zheng Y , Cao W R , et al. High-efficiency light-emitting devices based on quantum dots with tailored nanostructures[J]. Nature Photonics, 2015, 9: 259- 266.

DOI

43
Steckel J S , Zimmer J P , Coe-Sullivan S , et al. Blue luminescence from (CdS) ZnS core-shell nanocrystals[J]. Angewandte Chemie International Edition, 2004, 43 (16): 2154- 2158.

DOI

44
Jun S , Jang E . Interfused semiconductor nanocrystals: Brilliant blue photoluminescence and electroluminescence[J]. Chemical Communications, 2005, (36): 4616- 4618.

DOI

45
Liu Y , Li F S , Xu Z W , et al. Efficient all-solution processed quantum dot light emitting diodes based on inkjet printing technique[J]. ACS Applied Materials & Interfaces, 2017, 9 (30): 25506- 25512.

46
Liu Y , Han F , Li F S , et al. Inkjet-printed unclonable quantum dot fluorescent anti-counterfeiting labels with artificial intelligence authentication[J]. Nature Communications, 2019, 10 (1): 2409.

DOI

47
Huang Chen S W , Shen C C , Wu T Z , et al. Full-color monolithic hybrid quantum dot nanoring micro light-emitting diodes with improved efficiency using atomic layer deposition and nonradiative resonant energy transfer[J]. Photonics Research, 2019, 7 (4): 416.

DOI

48
Qin F , Liu C , Wu W H , et al. Inkjet printed quantum dots color conversion layers for full-color micro-LED displays[J]. Electronic Materials Letters, 2023, 19 (1): 19- 28.

DOI

49
Lin C T , Zhuan Y L , Jung N T , et al. Design of quantum dot color convertors for inkjet-printed optoelectronic devices: Violet-converted full color mini-LED[J]. Advanced Materials Technologies, 2024, 9 (3): 2301370.

DOI

50
Jia S Q , Tang H D , Ma J R , et al. High performance inkjet-printed quantum-dot light-emitting diodes with high operational stability[J]. Advanced Optical Materials, 2021, 9 (22): 2101069.

DOI

51
Chen M , Xie L M , Wei C T , et al. High performance inkjet-printed QLEDs with 18.3% EQE: Improving interfacial contact by novel halogen-free binary solvent system[J]. Nano Research, 2021, 14 (11): 4125- 4131.

DOI

52
Yang Z W , Lin G L , Bai J Y , et al. Inkjet-printed blue InP/ZnS/ZnS quantum dot light-emitting diodes[J]. Chemical Engineering Journal, 2022, 450: 138413.

DOI

53
Wang H W , Zhang Y M , Liu Y , et al. High-efficiency and high-resolution patterned quantum dot light emitting diodes by electrohydrodynamic printing[J]. Nanoscale Advances, 2023, 5 (4): 1183- 1189.

DOI

54
Zhang Y M , Yuan X , Chen Z , et al. Development of the ink-jet printing technology for 55-inch 8K AMQLED display[J]. Journal of the Society for Information Display, 2023, 31 (5): 355- 362.

DOI

55
Shulga A G , Yamamura A , Tsuzuku K , et al. Patterned quantum dot photosensitive FETs for medium frequency optoelectronics[J]. Advanced Materials Technologies, 2019, 4 (9): 1900054.

DOI

56
Mei W H , Zhang Z Q , Zhang A D , et al. High-resolution, full-color quantum dot light-emitting diode display fabricated via photolithography approach[J]. Nano Research, 2020, 13 (9): 2485- 2491.

DOI

57
Lee J Y , Kim E A , Han J S , et al. Nondestructive direct photolithography for patterning quantum dot films by atomic layer deposition of ZnO[J]. Advanced Materials Interfaces, 2022, 9 (22): 2200835.

DOI

58
Mentzel T S , Wanger D D , Ray N , et al. Nanopatterned electrically conductive films of semiconductor nanocrystals[J]. Nano Letters, 2012, 12 (8): 4404- 4408.

DOI

59
Zou C , Chang C , Sun D , et al. Photolithographic patterning of perovskite thin films for multicolor display applications[J]. Nano Letters, 2020, 20 (5): 3710- 3717.

DOI

60
Bae J , Shin Y , Yoo H , et al. Quantum dot-integrated GaN light-emitting diodes with resolution beyond the retinal limit[J]. Nature Communications, 2022, 13 (1): 1862.

DOI

61
Xing D , Lin C C , Ho Y L , et al. Self-healing lithographic patterning of perovskite nanocrystals for large-area single-mode laser array[J]. Advanced Functional Materials, 2021, 31 (1): 2006283.

DOI

62
Guo W S , Chen J , Ma T , et al. Direct photolithography patterning of quantum dot-polymer[J]. Advanced Functional Materials, 2024, 34 (10): 2310338.

DOI

63
Zhang P P , Yang G L , Li F , et al. Direct in situ photolithography of perovskite quantum dots based on photocatalysis of lead bromide complexes[J]. Nature Communications, 2022, 13 (1): 6713.

DOI

64
Liu X , Li J J , Zhang P P , et al. Perovskite quantum dot microarrays: in situ fabrication via direct print photopolymerization[J]. Nano Research, 2022, 15 (8): 7681- 7687.

DOI

65
Srivastava S , Lee K E , Fitzgerald E A , et al. Freestanding high-resolution quantum dot color converters with small pixel sizes[J]. ACS Applied Materials & Interfaces, 2022, 14 (43): 48995- 49002.

66
Lee J , Ha J , Lee H , et al. Direct optical lithography of colloidal InP-based quantum dots with ligand pair treatment[J]. ACS Energy Letters, 2023, 8 (10): 4210- 4217.

DOI

67
Fu Z , Zhou L K , Yin Y , et al. Direct photo-patterning of efficient and stable quantum dot light-emitting diodes via light-triggered, carbocation-enabled ligand stripping[J]. Nano Letters, 2023, 23 (5): 2000- 2008.

DOI

68
Yang J , Lee M , Park S Y , et al. Nondestructive photopatterning of heavy-metal-free quantum dots[J]. Advanced Materials, 2022, 34 (43): e2205504.

DOI

69
Qie Y , Hu H L , Yu K B , et al. Ligand-nondestructive direct photolithography assisted by semiconductor polymer cross-linking for high-resolution quantum dot light-emitting diodes[J]. Nano Letters, 2024, 24 (4): 1254- 1260.

DOI

70
Lu S Y , Fu Z , Li F , et al. Beyond a linker: The role of photochemistry of crosslinkers in the direct optical patterning of colloidal nanocrystals[J]. Angewandte Chemie (International Ed), 2022, 61 (23): e202202633.

DOI

文章导航

/