张新岩,硕士研究生,研究方向为图像处理,电子信箱:2213041047@post.usts.edu.cn |
收稿日期: 2023-12-03
网络出版日期: 2025-02-19
基金资助
国家自然科学基金项目(62073231)
版权
A parallel Transformer-CNN network for image compression sensing reconstruction
Received date: 2023-12-03
Online published: 2025-02-19
Copyright
图像压缩感知是一种能够在低采样率下实现高效信号采样与重构的技术,但在实现高质量图像重构时,面临局部与全局特征难以有效融合的问题。为此,提出一种结合Transformer与卷积神经网络(convolutional neural networks,CNN)优点的图像压缩感知重构框架(transformer-CNN mixture transformer,TCMformer)。该框架充分利用CNN的局部建模能力和Transformer的全局特征捕捉能力;设计了一种特征融合模块(TCM Block),有效桥接局部与全局特征,从而提升特征表示效率;同时,为降低模型复杂度并控制计算成本,框架采用基于窗口的Transformer结构,通过分块实现高效的全局建模。此外,引入渐进式重建策略,利用多尺度特征图逐步优化重建质量。实验结果表明,TCMformer在峰值信噪比、结构相似性和视觉效果上相较于主流的压缩感知重构算法表现更优,为实现高质量的图像重建提供了一种有效的解决方案。
关键词: 压缩感知; Transformer; 卷积神经网络; 图像重建
张新岩 , 祝勇俊 , 吴宏杰 , 周凡利 . 基于并行Transformer和CNN的图像压缩感知重构网络[J]. 科技导报, 2025 , 43(2) : 108 -116 . DOI: 10.3981/j.issn.1000-7857.2023.12.01823
1 |
|
2 |
张华, 曹良才, 金国藩, 等. 压缩成像技术的应用与挑战[J]. 科技导报, 2018, 36 (10): 20- 29.
|
3 |
|
4 |
|
5 |
|
6 |
|
7 |
|
8 |
山世光, 阚美娜, 刘昕, 等. 深度学习: 多层神经网络的复兴与变革[J]. 科技导报, 2016, 34 (14): 60- 70.
|
9 |
|
10 |
|
11 |
Zhang J, Ghanem B. ISTA-net: Interpretable optimization-inspired deep network for image compressive sensing[C]// Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2018: 1828-1837.
|
12 |
|
13 |
Chen J W, Sun Y B, Liu Q S, et al. Learning memory augmented cascading network for compressed sensing of images[M]//Lecture Notes in Computer Science. Cham: Springer International Publishing, 2020: 513-529.
|
14 |
|
15 |
|
16 |
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010.
|
17 |
Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16×16 words: Transformers for image recognition at scale[J]. arXiv preprint arXiv: 2010.11929, 2020.
|
18 |
Wang Z D, Cun X D, Bao J M, et al. Uformer: A general U-shaped transformer for image restoration[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ: IEEE, 2022: 17683-17693.
|
19 |
|
20 |
|
21 |
Gan L. Block compressed sensing of natural images[C]//Proceedings of 15th International Conference on Digital Signal Processing. Piscataway, NJ: IEEE, 2007: 403-406.
|
22 |
|
23 |
Kulkarni K, Lohit S, Turaga P, et al. ReconNet: Non-iterative reconstruction of images from compressively sensed measurements[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ: IEEE, 2016: 449-458.
|
24 |
|
25 |
Chen W J, Yang C L, Yang X. FSOINET: Feature-space optimization-inspired network for image compressive sensing[C]//Proceedings of ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway, NJ: IEEE, 2022: 2460-2464.
|
26 |
|
/
〈 |
|
〉 |