科技评论

DeepSeek引发的AI发展路径思考

  • 李国杰
展开
  • 中国科学院计算技术研究所, 北京 100190
李国杰,研究员,中国工程院院士,研究方向为计算机体系结构、并行算法、人工智能、大数据、计算机网络、信息技术发展战略等,电子信箱:lig@ict.ac.cn

收稿日期: 2025-02-03

  修回日期: 2025-02-08

  网络出版日期: 2025-03-07

Thoughts on the DeepSeek triggered path of AI development

  • LI Guojie
Expand
  • Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China

Received date: 2025-02-03

  Revised date: 2025-02-08

  Online published: 2025-03-07

摘要

阐述了因DeepSeek横空出世引发的关于AI发展路径的思考。首先解释了为什么DeepSeek会引起全球性的科技震撼,接着讨论了“规模法则”(Scaling Law)是否已遇到天花板、发展“通用人工智能”(AGI)应选择什么道路、发展人工智能应该追求高算力还是高算效(高能效)、“开源”为什么有这么大的威力等问题。最后对中国在人工智能领域的实力提升和如何实现人工智能自立自强提出建议。

本文引用格式

李国杰 . DeepSeek引发的AI发展路径思考[J]. 科技导报, 2025 , 43(3) : 14 -19 . DOI: 10.3981/j.issn.1000-7857.2025.02.00183

Abstract

This article expounds the author's reflections on the development path of AI triggered by the emergence of DeepSeek. Firstly, it explains why DeepSeek has caused a global technological shock. Then, it discusses whether the scaling law has reached its ceiling, what path should be chosen for the development of artificial general intelligence (AGI), whether the development of AI should pursue high computing power or high computing efficiency (high energy efficiency), and why open source has such great power. Finally, it presents several views on China's strength in the field of AI and how to achieve self-reliance and self-improvement in AI.

参考文献

[1] DeepSeek-AI, Liu A X, Feng B, et al. DeepSeek-V3 technical report[J]. Computer Science, 2024, doi: 10.48- 550/arXiv.2412.19437.
[2] DeepSeek-AI, Guo D Y, Yang D J, et al. DeepSeek-R1: Incentivizing reasoning capability in LLMs via reinforcement learning[J]. Computer Science, 2025, doi: 10.48550/arXiv.2501.12948.
[3] Kaplan J, McCandlish S, Henighan T, et al. Scaling laws for neural language models[J]. Computer Science, 2020, doi: 10.48550/arXiv. 2001.08- 361.
[4] Sutton R. The bitter lesson[EB/OL]. (2019-03-13) [2025-02-06]. http:// www.incompleteideas.net/IncIdeas/BitterLesson.html.
[5] Hinton. 放弃永生的凡人计算[EB/ OL]. (2023-06-11) [2025-02-06]. https://cloud. tencent. com/developer/ news/1099853.
[6] Muennighoff N, Yang Z T, Shi W J, et al. S1: Simple test-time scaling[J]. Computer Science, 2025, doi: 10.48- 550/arXiv.2501.19393.
[7] Stanford HAI. Artificial Intelligence Index Report 2024[R/OL]. [2025- 02-06]. https://aiindex. stanford. edu/ report.
文章导航

/