特色专题:混合智能中的情感交互与协同决策

迈向人机共生时代:人机协同决策的心理学视角

  • 朱奥 , 1 ,
  • 刘华硕 1 ,
  • 袁佩君 , 2, * ,
  • 张丹 , 1, 3, *
展开
  • 1. 清华大学心理与认知科学系, 北京 100084
  • 2. 启元实验室, 北京 100095
  • 3. 清华大学脑与智能实验室, 北京 100084
袁佩君(通信作者),助理研究员,研究方向为人机交互,电子信箱:
张丹(共同通信作者),副教授,研究方向为情感计算、脑机接口,电子信箱:

朱奥,博士研究生,研究方向为人机协同决策,电子信箱:

收稿日期: 2023-09-05

  网络出版日期: 2025-03-07

基金资助

教育部高等学校心理学类专业教指委教改项目(20222008)

清华大学教学改革项目(DX05-02)

版权

版权所有,未经授权,不得转载。

Towards the era of human-machine symbiosis: A psychological perspective on human-machine collaborative decision-making

  • Ao ZHU , 1 ,
  • Huashuo LIU 1 ,
  • Peijun YUAN , 2, * ,
  • Dan ZHANG , 1, 3, *
Expand
  • 1. Department of Psychology and Cognitive Sciences, Tsinghua University, Beijing 100084, China
  • 2. Qiyuan Lab, Beijing 100095, China
  • 3. Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing 100084, China

Received date: 2023-09-05

  Online published: 2025-03-07

Copyright

All rights reserved. Unauthorized reproduction is prohibited.

摘要

在人工智能技术的驱动下,人机协同决策效能逐步提升,展现出巨大的潜力。然而,当前人机协同决策领域面临情感问题、信任问题、决策权力分配问题和道德对齐问题等挑战。其中,人机协同情感问题涉及机器如何克服人机异质性、准确识别人类的情感状态并做出适当响应;信任问题关系到人类对机器决策的依赖程度和信任水平,需要在过度信任和信任不足之间找到平衡;决策权力分配问题则聚焦于在人机协作中如何合理分配决策权,以防止机器权力过大或不足;道德对齐问题探讨如何确保机器决策符合人类的道德标准和价值观,保障决策的伦理性和社会接受度。提出了人机协同决策的未来发展方向,包括提升机器对人类情感的理解和响应能力、建立稳固的信任机制、优化决策权力的分配方式,以及确保机器决策符合伦理和道德标准。在迈向人机共生的道路上,不仅需要技术创新,还需要结合心理学视角来应对这些挑战,以实现更加高效、安全和可持续的人机协同决策。

本文引用格式

朱奥 , 刘华硕 , 袁佩君 , 张丹 . 迈向人机共生时代:人机协同决策的心理学视角[J]. 科技导报, 2025 , 43(3) : 37 -46 . DOI: 10.3981/j.issn.1000-7857.2023.09.01354

1
黄海丰, 刘培森, 李擎, 等. 协作机器人智能控制与人机交互研究综述[J]. 工程科学学报, 2022, 44 (4): 780- 791.

2
Licklider J C R . Man-computer symbiosis[J]. IRE Transactions on Human Factors in Electronics, 1960 (1): 4- 11.

3
Silver D , Huang A , Maddison C J , et al. Mastering the game of Go with deep neural networks and tree search[J]. Nature, 2016, 529 (7587): 484- 489.

DOI

4
Openai. Gpt-4 technical report[EB/OL]. [2023-08-05]. https://cdn.openai.com/papers/gpt-4.pdf.

5
Esteva A , Kuprel B , Novoa R A , et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature, 2017, 542 (7639): 115- 118.

DOI

6
何贵兵, 陈诚, 何泽桐, 等. 智能组织中的人机协同决策: 基于人机内部兼容性的研究探索[J]. 心理科学进展, 2022, 30 (12): 2619- 2627.

DOI

7
Sheridan T B . Human-robot interaction: Status and challenges[J]. Human Factors, 2016, 58 (4): 525- 532.

DOI

8
Huang M H , Rust R T . Artificial intelligence in service[J]. Journal of Service Research, 2018, 21 (2): 155- 172.

DOI

9
孙效华, 张义文, 秦觉晓, 等. 人机智能协同研究综述[J]. 包装工程, 2020, 41 (18): 1- 11.

10
Raymond R C . Use of the time-sharing computer in business planning and budgeting[J]. Management Science, 1966, 12 (8): B-363- B-381.

DOI

11
Turban E . The use of mathematical models in plant maintenance decision making[J]. Management Science, 1967, 13 (6): B-342- B-358.

DOI

12
Power D J. Decision support systems: A historical overview [M]//Handbook on Decision Support Systems 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008: 121-140.

13
Davis G B . Management information systems: Conceptual foundations, structure, and development[M]. New York: McGraw-Hill, Inc., 1984.

14
Power D J . Decision support systems: Concepts and resources for managers[M]. Westport: Quorum Books, 2002.

15
Kunz J C , Shortliffe E H , Buchanan B G , et al. Computerassisted decision making in medicine[J]. The Journal of Medicine and Philosophy, 1984, 9 (2): 135- 160.

DOI

16
Sprague R H . A framework for the development of decisoin support systems[J]. MIS Quarterly, 1980, 4 (4): 1- 26.

DOI

17
Provost F , Fawcett T . Data science and its relationship to big data and data-driven decision making[J]. Big Data, 2013, 1 (1): 51- 59.

DOI

18
Sutton R S , Barto A G . Reinforcement learning: An introduction[M]. Cambridge: MIT Press, 2018.

19
Demner-Fushman D , Chapman W W , McDonald C J . What can natural language processing do for clinical decision support?[J]. Journal of Biomedical Informatics, 2009, 42 (5): 760- 772.

DOI

20
Basso B , Antle J . Digital agriculture to design sustainable agricultural systems[J]. Nature Sustainability, 2020, 3: 254- 256.

DOI

21
Cropley D H , Kaufman J C , Cropley A J . Measuring creativity for innovation management[J]. Journal of Technology Management & Innovation, 2011, 6 (3): 13- 30.

22
Guilford J P . Creativity: Yesterday, today and tomorrow[J]. The Journal of Creative Behavior, 1967, 1 (1): 3- 14.

DOI

23
Lake B M , Ullman T D , Tenenbaum J B , et al. Building machines that learn and think like people[J]. The Behavioral and Brain Sciences, 2017, 40: e253.

DOI

24
Gigerenzer G , Gaissmaier W . Heuristic decision making[J]. Annual Review of Psychology, 2011, 62: 451- 482.

DOI

25
Woolley A W , Chabris C F , Pentland A , et al. Evidence for a collective intelligence factor in the performance of human groups[J]. Science, 2010, 330 (6004): 686- 688.

DOI

26
Brynjolfsson E , McAfee A . The second machine age: Work, progress, and prosperity in a time of brilliant technologies[M]. New York: W.W. Norton & Company, 2014.

27
Tversky A , Kahneman D . Judgment under uncertainty: Heuristics and biases[J]. Science, 1974, 185 (4157): 1124- 1131.

DOI

28
Dietvorst B J , Simmons J P , Massey C . Algorithm aversion: People erroneously avoid algorithms after seeing them err[J]. Journal of Experimental Psychology General, 2015, 144 (1): 114- 126.

DOI

29
Davenport T H , Kirby J . Only humans need apply: Winners and losers in the age of smart machines[M]. New York: Harper Business, 2016.

30
Simon H A . A behavioral model of rational choice[J]. The Quarterly Journal of Economics, 1955, 69 (1): 99.

DOI

31
Squire L R . Memory systems of the brain: A brief history and current perspective[J]. Neurobiology of Learning and Memory, 2004, 82 (3): 171- 177.

DOI

32
Lerner J S , Keltner D . Beyond valence: Toward a model of emotion-specific influences on judgement and choice[J]. Cognition & Emotion, 2000, 14 (4): 473- 493.

33
Lim J , Wu W C , Wang J J , et al. Imaging brain fatigue from sustained mental workload: An ASL perfusion study of the time-on-task effect[J]. NeuroImage, 2010, 49 (4): 3426- 3435.

DOI

34
Minsky M . Society of mind[M]. New York: Simon and Schuster, 1988.

35
Lerner J S , Li Y , Valdesolo P , et al. Emotion and decision making[J]. Annual Review of Psychology, 2015, 66: 799- 823.

DOI

36
Corti K , Gillespie A . A truly human interface: Interacting face-to-face with someone whose words are determined by a computer program[J]. Frontiers in Psychology, 2015, 6: 634.

37
McDuff D , El Kaliouby R , Senechal T , et al. Automatic measurement of ad preferences from facial responses gathered over the Internet[J]. Image and Vision Computing, 2014, 32 (10): 630- 640.

DOI

38
Breazeal C . Toward sociable robots[J]. Robotics and Autonomous Systems, 2003, 42 (3/4): 167- 175.

39
Franti E , Ispas I , Dragomir V , et al. Voice based emotion recognition with convolutional neural networks for companion robots[J]. Science and Technology, 2018, 20 (3): 222- 240.

DOI

40
Castellano G, Villalba S D, Camurri A. Recognising human emotions from body movement and gesture dynamics[M]//Affective Computing and Intelligent Interaction. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007: 71-82.

41
Eyben F, Weninger F, Gross F, et al. Recent developments in openSMILE, the Munich open-source multimedia feature extractor[C]//Proceedings of the 21st ACM International Conference on Multimedia. New York: ACM, 2013: 835-838.

42
Koelstra S , Muhl C , Soleymani M , et al. DEAP: A database for emotion Analysis; Using physiological signals[J]. IEEE Transactions on Affective Computing, 2012, 3 (1): 18- 31.

DOI

43
Mikolov T, Sutskever I, Chen K, et al. Distributed representations of words and phrases and their compositionality [EB/OL]. [2023-05-06]. https://arxiv.org/abs/1310.4546v1.

44
Zhang Z P , Luo P , Loy C C , et al. Learning deep representation for face alignment with auxiliary attributes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38 (5): 918- 930.

DOI

45
Hu X , Chen J J , Wang F , et al. Ten challenges for EEG-based affective computing[J]. Brain Science Advances, 2019, 5 (1): 1- 20.

DOI

46
Calvo R A , D'Mello S . Affect detection: An interdisciplinary review of models, methods, and their applications[J]. IEEE Transactions on Affective Computing, 2010, 1 (1): 18- 37.

DOI

47
Hu X , Wang F , Zhang D . Similar brains blend emotion in similar ways: Neural representations of individual difference in emotion profiles[J]. NeuroImage, 2022, 247: 118819.

DOI

48
Riek L D, Rabinowitch T C, Chakrabarti B, et al. How anthropomorphism affects empathy toward robots[C]//Proceedings of the 4th ACM/IEEE International Conference on Human Robot Interaction. New York: ACM, 2009: 245-246.

49
Rafaeli A , Vilnai-Yavetz I . Emotion as a connection of physical artifacts and organizations[J]. Organization Science, 2004, 15 (6): 671- 686.

DOI

50
Bickmore T W , Picard R W . Establishing and maintaining long-term human-computer relationships[J]. ACM Transactions on Computer-Human Interaction, 2005, 12 (2): 293- 327.

DOI

51
Riek L D . Healthcare robotics[J]. Communications of the ACM, 2017, 60 (11): 68- 78.

DOI

52
Freedy A, Weltman G, Freedy E, et al. Adaptive delegation interfaces (ADI) for improved situation awareness and reduction of workload in controlling multiple unmanned vehicles (UV) [EB/OL]. [2023-03-01]. https://www.researchgate.net/publication/235131830_Adaptive_Delegation_Interfaces_ADI_for_Improved_Situation_Awareness_and_Reduction_of_Workload_in_Controlling_Multiple_Unmanned_Vehicles_UV.

53
Parasuraman R , Riley V . Humans and automation: Use, misuse, disuse, abuse[J]. Human Factors, 1997, 39 (2): 230- 253.

DOI

54
Schaefer K E , Chen J Y C , Szalma J L , et al. A meta-analysis of factors influencing the development of trust in automation: Implications for understanding autonomy in future systems[J]. Human Factors, 2016, 58 (3): 377- 400.

DOI

55
Kok B C , Soh H . Trust in robots: Challenges and opportunities[J]. Current Robotics Reports, 2020, 1 (4): 297- 309.

DOI

56
Chen M , Nikolaidis S , Soh H , et al. Trust-aware decision making for human-robot collaboration: Model learning and planning[J]. ACM Transactions on Human-Robot Interaction, 2020, 9 (2): 1- 23.

57
Lee J D , See K A . Trust in automation: Designing for appropriate reliance[J]. Human Factors, 2004, 46 (1): 50- 80.

DOI

58
Merritt S M , Ilgen D R . Not all trust is created equal: Dispositional and history-based trust in human-automation interactions[J]. Human Factors, 2008, 50 (2): 194- 210.

DOI

59
Shortliffe E H , Sepúlveda M J . Clinical decision support in the era of artificial intelligence[J]. JAMA, 2018, 320 (21): 2199- 2200.

DOI

60
Kirchkamp O , Strobel C . Sharing responsibility with a machine[J]. Journal of Behavioral and Experimental Economics, 2019, 80: 25- 33.

DOI

61
Madhavan P , Wiegmann D A . Similarities and differences between human-human and human-automation trust: An integrative review[J]. Theoretical Issues in Ergonomics Science, 2007, 8 (4): 277- 301.

DOI

62
Swar B , Hameed T , Reychav I . Information overload, psychological ill-being, and behavioral intention to continue online healthcare information search[J]. Computers in Human Behavior, 2017, 70: 416- 425.

DOI

63
Poursabzi-Sangdeh F, Goldstein D G, Hofman J M, et al. Manipulating and measuring model interpretability[C]//Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. New York: ACM, 2021: 1-52.

64
Nass C , Moon Y . Machines and mindlessness: Social responses to computers[J]. Journal of Social Issues, 2000, 56 (1): 81- 103.

DOI

65
Parasuraman R , Sheridan T B , Wickens C D . A model for types and levels of human interaction with automation[J]. IEEE Transactions on Systems, Man, and Cybernetics Part A, Systems and Humans, 2000, 30 (3): 286- 297.

DOI

66
Xiong W , Wang C , Ma L . Partner or subordinate? Sequential risky decision-making behaviors under human-machine collaboration contexts[J]. Computers in Human Behavior, 2023, 139: 107556.

DOI

67
Parasuraman R , Manzey D H . Complacency and bias in human use of automation: An attentional integration[J]. Human Factors, 2010, 52 (3): 381- 410.

DOI

68
Haesevoets T , De Cremer D , Dierckx K , et al. Human-machine collaboration in managerial decision making[J]. Computers in Human Behavior, 2021, 119: 106730.

DOI

69
Langer E J . The illusion of control[J]. Journal of Personality and Social Psychology, 1975, 32 (2): 311- 328.

DOI

70
Byrne E A , Parasuraman R . Psychophysiology and adaptive automation[J]. Biological Psychology, 1996, 42 (3): 249- 268.

DOI

71
Scerbo M W. Adaptive automation[M]//Neuroergonomics. Oxford: Oxford University Press, 2006: 239-252.

72
Bobadilla-Suarez S , Sunstein C R , Sharot T . The intrinsic value of choice: The propensity to under-delegate in the face of potential gains and losses[J]. Journal of Risk and Uncertainty, 2017, 54 (3): 187- 202.

DOI

73
Bonnefon J F , Shariff A , Rahwan I . The social dilemma of autonomous vehicles[J]. Science, 2016, 352 (6293): 1573- 1576.

DOI

74
Buolamwini J, Gebru T. Gender shades: Intersectional accuracy disparities in commercial gender classification[C]// Conference on fairness, accountability and transparency. New York: PMLR, 2018: 77-91.

75
Nyholm S , Smids J . The ethics of accident-algorithms for self-driving cars: An applied trolley problem?[J]. Ethical Theory and Moral Practice, 2016, 19 (5): 1275- 1289.

DOI

76
Barocas S , Selbst A D . Big data's disparate impact[J]. California Law Review, 2016, 104: 671.

77
Bryson J J , Diamantis M E , Grant T D . Of, for, and by the people: The legal Lacuna of synthetic persons[J]. Artificial Intelligence and Law, 2017, 25 (3): 273- 291.

DOI

78
李睿晶, 房超, 陈凯. 新时代我国人工智能发展回顾与展望[J]. 科技智囊, 2023 (1): 14- 21.

79
Miller T . Explanation in artificial intelligence: Insights from the social sciences[J]. Artificial Intelligence, 2019, 267: 1- 38.

DOI

80
Crandall J W , Oudah M , Tennom , et al. Cooperating with machines[J]. Nature Communications, 2018, 9 (1): 233.

DOI

81
Arntz M, Gregory T, Zierahn U. The risk of automation for jobs in OECD countries: A comparative analysiss[R]. Paris: OECD Publishing, 2016.

82
Sauer J , Hockey G R J , Wastell D G . Effects of training on short-and long-term skill retention in a complex multiple-task environment[J]. Ergonomics, 2000, 43 (12): 2043- 2064.

DOI

83
张丹, 李佳蔚. 探索思维的力量: 脑机接口研究现状与展望[J]. 科技导报, 2017, 35 (9): 62- 67.

84
Gao X R , Wang Y J , Chen X G , et al. Interface, interaction, and intelligence in generalized brain-computer interfaces[J]. Trends in Cognitive Sciences, 2021, 25 (8): 671- 684.

DOI

文章导航

/