研究论文

空冷型氢燃料电池系统优化与控制策略研究

  • 赵小军 , 1, 2 ,
  • 王智虎 1 ,
  • 陈敏学 1 ,
  • 邱殿凯 , 1, *
展开
  • 1. 上海交通大学机械与动力工程学院, 上海 200240
  • 2. 国家燃料电池技术创新中心, 潍坊 261041
邱殿凯(通信作者),教授,研究方向为燃料电池及微细制造,电子信箱:

赵小军,高级工程师,研究方向为燃料电池及电解水制氢,电子信箱:

收稿日期: 2024-07-29

  网络出版日期: 2025-03-07

基金资助

广州市重点研发计划项目(202103040002)

机械系统与振动全国重点实验室自主课题(MSVZD202402)

泰山产业领军人才工程项目

版权

版权所有,未经授权,不得转载。

Optimization of air-cooled fuel cell systems and control strategies

  • Xiaojun ZHAO , 1, 2 ,
  • Zhihu WANG 1 ,
  • Minxue CHEN 1 ,
  • Diankai QIU , 1, *
Expand
  • 1. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • 2. National Center of Technology Innovation for Fuel Cell, Weifang 261041, China

Received date: 2024-07-29

  Online published: 2025-03-07

Copyright

All rights reserved. Unauthorized reproduction is prohibited.

摘要

基于空冷型燃料电池原位测试实验平台,对优化的阳极氢气侧双向供气的气路结构和阴极空气侧强化中间区域散热的差异化风速风扇配置方案开展实验分析。结果发现,优化脉排间隔时间可以减小运行过程中的电压衰减,并提出了基于不同负载层次的氢气控制策略。阴极中间区域风速提升可以改善单电池内温度和电流密度的分布均匀性,提出了分段式风扇转速控制策略,在不同负载电流区间内对最佳运行温度和阴极入口风速进行了设计。在此基础上,搭建包含33节电池的空冷型燃料电池系统,验证了控制策略的有效性。

本文引用格式

赵小军 , 王智虎 , 陈敏学 , 邱殿凯 . 空冷型氢燃料电池系统优化与控制策略研究[J]. 科技导报, 2025 , 43(3) : 95 -104 . DOI: 10.3981/j.issn.1000-7857.2024.07.00925

1
Lin R, Zhong D, Lan S B, et al. Experimental validation for enhancement of PEMFC cold start performance: Based on the optimization of micro porous layer[J]. Applied Energy, 2021, 300: 117306.

DOI

2
Qiu D K, Peng L F, Yi P Y, et al. Review on proton exchange membrane fuel cell stack assembly: Quality evaluation, assembly method, contact behavior and process design[J]. Renewable and Sustainable Energy Reviews, 2021, 152: 111660.

DOI

3
Grandi M, Rohde S, Liu D J, et al. Recent advancements in high performance polymer electrolyte fuel cell electrode fabrication-Novel materials and manufacturing processes[J]. Journal of Power Sources, 2023, 562: 232734.

DOI

4
刘如意, 王哲, 李玲莲, 等. 液冷型燃料电池热管理子系统建模与控制研究[J]. 电源技术, 2024, 48(4): 701- 710.

DOI

5
雍加望, 赵倩倩, 冯能莲. 质子交换膜燃料电池热管理系统建模及故障仿真[J]. 可再生能源, 2024, 42(3): 308- 316.

6
翟俊香, 何广利, 许壮, 等. 空冷型质子交换膜燃料电池系统效率的实验研究[J]. 储能科学与技术, 2020, 9(6): 1885- 1889.

7
张丽, 石文荣, 梁琦, 等. 氢气进气压力对空冷PEMFC性能的影响[J]. 化工学报, 2023, 74(11): 4730- 4738.

8
王仁康. 无人机用燃料电池多电混合电源系统设计与实现[D]. 成都: 电子科技大学, 2020.

9
许鹏. 氢燃料电池一体化后备电源系统[J]. 中国有线电视, 2019(1): 38- 41.

10
丁权. 燃料电池3D流场的主动优化及水热管理研究[D]. 北京: 华北电力大学, 2023.

11
程植源, 周荣良, 李嘉颀, 等. 气体扩散层孔隙率梯度对质子交换膜燃料电池水管理的影响[J]. 内燃机与动力装置, 2022, 39(3): 41- 47.

12
赵萌, 刘世通, 苏东超, 等. 燃料电池水热管理的技术研究[J]. 内燃机与配件, 2021(15): 63- 64.

DOI

13
姚安琪, 曹亚平, 刘单珂, 等. 质子交换膜燃料电池水热管理特性研究[J]. 电源技术, 2023, 47(3): 341- 347.

DOI

14
彭书浩. 质子交换膜燃料电池热管理系统控制策略研究[D]. 杭州: 浙江大学, 2022.

15
Santa Rosa D T, Pinto D G, Silva V S, et al. High performance PEMFC stack with open-cathode at ambient pressure and temperature conditions[J]. International Journal of Hydrogen Energy, 2007, 32(17): 4350- 4357.

DOI

16
Peng Y P, Mahyari H M, Moshfegh A, et al. A transient heat and mass transfer CFD simulation for proton exchange membrane fuel cells (PEMFC) with a dead-ended anode channel[J]. International Communications in Heat and Mass Transfer, 2020, 115: 104638.

DOI

17
Meyer Q, Ashton S, Torija S, et al. Nitrogen blanketing and hydrogen starvation in dead-ended-anode polymer electrolyte fuel cells revealed by hydro-electro-thermal analysis[J]. Electrochimica Acta, 2016, 203: 198- 205.

DOI

18
Strahl S, Husar A, Riera J. Experimental study of hydrogen purge effects on performance and efficiency of an opencathode Proton Exchange Membrane fuel cell system[J]. Journal of Power Sources, 2014, 248: 474- 482.

DOI

19
Rabbani A, Rokni M. Effect of nitrogen crossover on purging strategy in PEM fuel cell systems[J]. Applied Energy, 2013, 111: 1061- 1070.

DOI

20
Mokmeli A, Asghari S. An investigation into the effect of anode purging on the fuel cell performance[J]. International Journal of Hydrogen Energy, 2010, 35(17): 9276- 9282.

DOI

21
Lin Y F, Chen Y S. Experimental study on the optimal purge duration of a proton exchange membrane fuel cell with a dead-ended anode[J]. Journal of Power Sources, 2017, 340: 176- 182.

DOI

22
Gong K Y, Tian C Q, Guo Z Y, et al. Experimental investigation on the open cathode air-cooled proton exchange membrane fuel cells: Optimum operating parameters and control strategies[J]. International Journal of Hydrogen Energy, 2024, 60: 1134- 1146.

DOI

23
Zhao J, Huang Z P, Jian B X, et al. Thermal performance enhancement of air-cooled proton exchange membrane fuel cells by vapor chambers[J]. Energy Conversion and Management, 2020, 213: 112830.

DOI

24
Sasmito A P, Lum K W, Birgersson E, et al. Computational study of forced air-convection in open-cathode polymer electrolyte fuel cell stacks[J]. Journal of Power Sources, 2010, 195(17): 5550- 5563.

DOI

25
Pei H C, Shen J, Cai Y H, et al. Operation characteristics of air-cooled proton exchange membrane fuel cell stacks under ambient pressure[J]. Applied Thermal Engineering, 2014, 63(1): 227- 233.

DOI

26
Yuan W W, Ou K, Kim Y B. Thermal management for an air coolant system of a proton exchange membrane fuel cell using heat distribution optimization[J]. Applied Thermal Engineering, 2020, 167: 114715.

DOI

27
Ou K, Yuan W W, Choi M, et al. Performance increase for an open-cathode PEM fuel cell with humidity and temperature control[J]. International Journal of Hydrogen Energy, 2017, 42(50): 29852- 29862.

DOI

28
Qiu D K, Zhou X Y, Chen M X, et al. Optimization of control strategy for air-cooled PEMFC based on in situ observation of internal reaction state[J]. Applied Energy, 2023, 350: 121752.

DOI

29
陈敏学, 邱殿凯, 彭林法. 基于反应状态原位测试的空冷型燃料电池运行参数分析[J]. 上海交通大学学报, 2024, 58(3): 253- 262.

文章导航

/