研究论文

三氯咔唑与纳米材料复合污染胁迫对活性污泥微生物的影响

  • 樊晓燕 , 1, 2 ,
  • 张晓晗 1 ,
  • 刘元坤 1 ,
  • 耿文念 1 ,
  • 王亚宝 1
展开
  • 1. 北京工业大学城市建设学部, 北京 100124
  • 2. 北京工业大学重庆研究院, 重庆 401121

樊晓燕,副教授,研究方向为水污染控制,电子信箱:

收稿日期: 2024-03-20

  网络出版日期: 2025-03-07

基金资助

国家自然科学基金项目(51808013)

重庆市自然科学基金项目(CSTB2022NSCQ-MSX1181)

版权

版权所有,未经授权,不得转载。

Impact of 3-chlorocarbazole and Fe3O4 nanoparticles combined pollution on microbial community in activated sludge

  • Xiaoyan FAN , 1, 2 ,
  • Xiaohan ZHANG 1 ,
  • Yuankun LIU 1 ,
  • Wennian GENG 1 ,
  • Yabao WANG 1
Expand
  • 1. Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China
  • 2. Chongqing Research Institute of Beijing University of Technology, Chongqing 401121, China

Received date: 2024-03-20

  Online published: 2025-03-07

Copyright

All rights reserved. Unauthorized reproduction is prohibited.

摘要

新污染物共暴露会对污水处理厂活性污泥微生物群落结构产生重要影响,但卤代咔唑和纳米材料复合污染对活性污泥系统生态效应的研究尚未开展。选择低(0.05 mg/L)和高(5 mg/L)2种浓度的三氯咔唑(3-chlorocarbazole,3-CCZ)与1 mg/L纳米四氧化三铁(Fe3O4 nanoparticles,Fe3O4NPs)作为胁迫条件,探究复合污染对活性污泥体系细菌群落的短期影响以及胁迫后体系对低温的响应。结果表明,3-CCZ与Fe3O4 NPs复合污染会对微生物群落丰富度产生抑制作用,污染物的添加以及低温环境都会改变微生物群落结构。基于全尺度分类发现各类群微生物中均存在抗性与恢复特性不同的特定菌属,稀有属对污染物的添加更敏感,丰富属中的SaccharimonadalesTM7a一直是优势菌属。利用网络关系图探究6个生物类群间的相互作用,条件稀有菌属(conditionally rare taxa,CRT)与条件丰富菌属(conditionally abundant taxa,CAT)分别是胁迫阶段和低温阶段下的核心分类单元,复合污染胁迫下稀有属与丰富属之间存在着复杂的共现关系。功能微生物中反硝化细菌(denitrifying bacteria,DNB)的相对丰度受到复合污染胁迫影响最显著,尤其低温环境下DNB相对丰度出现大幅上升。高浓度复合污染会引起硝化基因的富集,反硝化功能基因面对复合污染呈现出不同的变化。研究可为污水处理系统卤代咔唑与纳米材料复合污染的风险评价提供新的思路与理论依据。

本文引用格式

樊晓燕 , 张晓晗 , 刘元坤 , 耿文念 , 王亚宝 . 三氯咔唑与纳米材料复合污染胁迫对活性污泥微生物的影响[J]. 科技导报, 2025 , 43(3) : 105 -114 . DOI: 10.3981/j.issn.1000-7857.2024.03.01160

1
Fan X Y, Gao J F, Pan K L, et al. Temporal dynamics of bacterial communities and predicted nitrogen metabolism genes in a full-scale wastewater treatment plant[J]. RSC Advances, 2017, 7(89): 56317- 56327.

DOI

2
Zhang M Y, Xu Z H, Teng Y, et al. Non-target effects of repeated chlorothalonil application on soil nitrogen cycling: The key functional gene study[J]. Science of the Total Environment, 2016, 543: 636- 643.

DOI

3
Guo X P, Pang W H, Dou C L, et al. Sulfamethoxazole and COD increase abundance of sulfonamide resistance genes and change bacterial community structures within sequencing batch reactors[J]. Chemosphere, 2017, 175: 21- 27.

DOI

4
Dai T J, Zhang Y, Tang Y S, et al. Identifying the key taxonomic categories that characterize microbial community diversity using full-scale classification: A case study of microbial communities in the sediments of Hangzhou Bay[J]. FEMS Microbiology Ecology, 2017, 93(1): fiw203.

DOI

5
Zhao J R, Fan X Y, Li X, et al. Impact of ciprofloxacin and copper combined pollution on activated sludge: Abundantrare taxa and antibiotic resistance genes[J]. Bioresource Technology, 2022, 349: 126882.

DOI

6
林坤德, 陈艳秋, 袁东星. 新型污染物卤代咔唑的环境行为及生态毒理效应[J]. 环境科学, 2016, 37(4): 1576- 1583.

7
Li Z M, Fan X Y, Mu Y D, et al. Distribution characteristics and risk assessment of polyhalogenated carbazoles in sea water of the Yellow Sea[J]. Marine Pollution Bulletin, 2020, 161: 111656.

DOI

8
Jin H B, Zhao N, Hu H M, et al. Occurrence and partitioning of polyhalogenated carbazoles in seawater and sediment from East China Sea[J]. Water Research, 2021, 190: 116717.

DOI

9
Guo J H, Li Z N, Ranasinghe P, et al. Spatial and temporal trends of polyhalogenated carbazoles in sediments of upper great lakes: Insights into their origin[J]. Environmental Science & Technology, 2017, 51(1): 89- 97.

10
Zhang J W, Zhang C, Du Z K, et al. Emerging contaminant 1, 3, 6, 8-tetrabromocarbazole induces oxidative damage and apoptosis during the embryonic development of zebrafish (Danio rerio)[J]. Science of the Total Environment, 2020, 743: 140753.

DOI

11
Ji C Y, Yan L, Chen Y C, et al. Evaluation of the developmental toxicity of 2, 7-dibromocarbazole to zebrafish based on transcriptomics assay[J]. Journal of Hazardous Materials, 2019, 368: 514- 522.

DOI

12
Brar S K, Verma M, Tyagi R D, et al. Engineered nanoparticles in wastewater and wastewater sludge-Evidence and impacts[J]. Waste Management, 2010, 30(3): 504- 520.

DOI

13
Gao F, Zhang H M, Yang F L, et al. The effects of zero-valent iron (ZVI) and ferroferric oxide (Fe3O4) on anammox activity and granulation in anaerobic continuously stirred tank reactors (CSTR)[J]. Process Biochemistry, 2014, 49(11): 1970- 1978.

DOI

14
Ma B R, Wang S, Li Z W, et al. Magnetic Fe3O4 nanoparticles induced effects on performance and microbial community of activated sludge from a sequencing batch reactor under long-term exposure[J]. Bioresource Technology, 2017, 225: 377- 385.

DOI

15
Xu J J, Cheng Y F, Jin R C. Long-term effects of Fe3O4 NPs on the granule-based anaerobic ammonium oxidation process: Performance, sludge characteristics and microbial community[J]. Journal of Hazardous Materials, 2020, 398: 122965.

DOI

16
Rathnayake R M L D, Oshiki M, Ishii S, et al. Effects of dissolved oxygen and pH on nitrous oxide production rates in autotrophic partial nitrification granules[J]. Bioresource Technology, 2015, 197: 15- 22.

DOI

17
Keller A A, Lazareva A. Predicted releases of engineered nanomaterials: From global to regional to local[J]. Environmental Science & Technology Letters, 2014, 1(1): 65- 70.

18
Wu Y, Tan H L, Zhou C L, et al. Bioaccumulation and spatiotemporal trends of polyhalogenated carbazoles in great lakes fish from 2004 to 2016[J]. Environmental Science & Technology, 2018, 52(8): 4536- 4545.

19
Gao Y X, Li X, Zhao J R, et al. Response of microbial communities based on full-scale classification and antibiotic resistance genes to azithromycin and copper combined pollution in activated sludge nitrification laboratory mesocosms at low temperature[J]. Bioresource Technology, 2021, 341: 125859.

DOI

20
Karlsson H L, Toprak M S, Fadeel B. Toxicity of metal and metal oxide nanoparticles[M]//Handbook on the Toxicology of Metals. Amsterdam: Elsevier, 2015: 75-112.

21
杨其学, 石先阳. Fe3+对好氧颗粒污泥形成的影响及硝化特性研究[J]. 水处理技术, 2021, 47(7): 74- 79.

22
Albertsen M, Hugenholtz P, Skarshewski A, et al. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes[J]. Nature Biotechnology, 2013, 31(6): 533- 538.

DOI

23
Wang X J, Wang W Q, Zhang J, et al. Dominance of Candidatus saccharibacteria in SBRs achieving partial denitrification: Effects of sludge acclimating methods on microbial communities and nitrite accumulation[J]. RSC Advances, 2019, 9(20): 11263- 11271.

DOI

24
Dinis J M, Barton D E, Ghadiri J, et al. In search of an uncultured human-associated TM7 bacterium in the environment[J]. PLoS One, 2011, 6(6): e21280.

DOI

25
Kondrotaite Z, Valk L C, Petriglieri F, et al. Diversity and ecophysiology of the genus OLB8 and other abundant uncultured Saprospiraceae Genera in global wastewater treatment systems[J]. Frontiers in Microbiology, 2022, 13: 917553.

DOI

26
Daims H, Lebedeva E V, Pjevac P, et al. Complete nitrification by Nitrospira bacteria[J]. Nature, 2015, 528(7583): 504- 509.

DOI

27
Kiskira K, Papirio S, van Hullebusch E D, et al. Fe(Ⅱ)-mediated autotrophic denitrification: A new bioprocess for iron bioprecipitation/biorecovery and simultaneous treatment of nitrate-containing wastewaters[J]. International Biodeterioration & Biodegradation, 2017, 119: 631- 648.

28
Liu C J, Lin H, He P D, et al. Peat and bentonite amendments assisted soilless revegetation of oligotrophic and heavy metal contaminated nonferrous metallic tailing[J]. Chemosphere, 2022, 287: 132101.

DOI

29
Barberán A, Bates S T, Casamayor E O, et al. Using network analysis to explore co-occurrence patterns in soil microbial communities[J]. The ISME Journal, 2012, 6(2): 343- 351.

DOI

30
Wrage N, Velthof G L, Oenema O, et al. Acetylene and oxygen as inhibitors of nitrous oxide production in Nitrosomonas europaea and Nitrosospira briensis: A cautionary tale[J]. FEMS Microbiology Ecology, 2004, 47(1): 13- 18.

DOI

31
Itoi S, Ebihara N, Washio S, et al. Nitrite-oxidizing bacteria, Nitrospira, distribution in the outer layer of the biofilm from filter materials of a recirculating water system for the goldfish Carassius auratus[J]. Aquaculture, 2007, 264(1- 4): 297- 308.

32
Scholten E, Lukow T, Auling G, et al. Thauera mechernichensis sp. nov., an aerobic denitrifier from a leachate treatment plant[J]. International Journal of Systematic Bacteriology, 1999, 49(3): 1045- 1051.

33
Gao Y X, Li X, Fan X Y, et al. The dissimilarity of antibiotic and quorum sensing inhibitor on activated sludge nitrification system: Microbial communities and antibiotic resistance genes[J]. Bioresource Technology, 2022, 351: 127016.

DOI

文章导航

/