特色专题:大科学装置

国际大洋钻探的科学成就及未来展望

  • 朱婵 , 1 ,
  • 陈红瑾 , 2, 3, * ,
  • 杨伦庆 1 ,
  • 韩冰 2, 3
展开
  • 1. 广东省海洋发展规划研究中心, 广州 510220
  • 2. 中国地质调查局广州海洋地质调查局, 广州 511458
  • 3. 自然资源部海底矿产资源重点实验室, 广州 511458
陈红瑾(通信作者),工程师,研究方向为海洋沉积及古环境与古气候,电子信箱:

朱婵,工程师,研究方向为海洋发展战略与政策研究,电子信箱:

收稿日期: 2024-11-21

  网络出版日期: 2025-04-11

基金资助

国家自然科学基金青年科学基金项目(42306089)

广东省哲学社会科学规划2023年度重大项目(GD23ZD07)

版权

版权所有,未经授权,不得转载。

Major achievements of ocean scientific drilling and future perspective

  • Chan ZHU , 1 ,
  • Hongjin CHEN , 2, 3, * ,
  • Lunqing YANG 1 ,
  • Bing HAN 2, 3
Expand
  • 1. Guangdong Ocean Centre, Guangzhou 510220, China
  • 2. Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou 511458, China
  • 3. Key Laboratory of Seabed Mineral Resources, Ministry of Natural Resources, Guangzhou 511458, China

Received date: 2024-11-21

  Online published: 2025-04-11

Copyright

All rights reserved. Unauthorized reproduction is prohibited.

摘要

系统梳理国际大洋钻探50余年的钻探工作量、样品资料积累,以及在地球动力学、气候演变规律、生命起源与演化和海洋自然灾害等领域的重大科学成果产出,并分析了新形势下大洋钻探的在运营体系、数据资料管理与应用及科学目标制定等方面的发展方向。科学大洋钻探历经半个多世纪,不断刷新钻探的深度和广度,但全球洋底仍然存在大范围待探索的区域和亟待解决的科学问题。随着美国“决心”号钻探船退出历史舞台,欧洲、日本联合启动新一轮大洋钻探计划(IODP3),中国“梦想”号钻探船建成入列之际,IODP国际格局将迎来重大变革,中国科学家应当围绕国家战略发展需求,紧跟前沿科学领域,加强国际交流与合作,充分发挥自身优势,在未来科学大洋钻探领域占据主导权。

本文引用格式

朱婵 , 陈红瑾 , 杨伦庆 , 韩冰 . 国际大洋钻探的科学成就及未来展望[J]. 科技导报, 2025 , 43(5) : 79 -88 . DOI: 10.3981/j.issn.1000-7857.2024.11.01630

1
汪品先. 大洋钻探五十年: 回顾与前瞻[J]. 科学通报, 2018, 63 (36): 3868- 3876.

2
Becker K , Austin J , Exon N , et al. Fifty years of scientific ocean drilling[J]. Oceanography, 2019, 32 (1): 17- 21.

DOI

3
Smith D K , Exon N , Barriga F , et al. Ocean drilling: Forty years of international collaboration[J]. Eos, Transactions American Geophysical Union, 2010, 91 (43): 393- 394.

DOI

4
王文涛, 王金平, 揭晓蒙, 等. 面向2024年后的中国引领的国际大洋钻探计划管理与运行机制思考[J]. 海洋科学, 2022, 46 (2): 127- 134.

5
Robinson R S , Tikoo S , Fulton P . Sea changes for scientific ocean drilling[J]. Physics Today, 2024, 77 (2): 28- 34.

DOI

6
汪品先, 翦知湣. 探索南海深部的回顾与展望[J]. 中国科学: 地球科学, 2019, 49 (10): 1590- 1606.

7
Backman J, Moran K, McInroy D, et al. Expedition 302 summary[J/OL]. Geology, Environmental Science, 2006, doi: 10.2204/IODP.PROC.302.101.2006.

8
National Academies of Sciences, Engineering, and Medicine . Progress and priorities in ocean drilling: In search of earth's past and future[M]. Washington, DC: The National Academies Press, 2024.

9
鲁铮博, 史宇坤, 华洪, 等. 国际大洋科学钻探的数据资源与共享现状[J]. 高校地质学报, 2020, 26 (4): 472- 480.

10
Sessa J , Fraass A , Levay L , et al. The extending ocean drilling pursuits (eODP) project: Synthesizing scientific ocean drilling data[J]. Geochemistry, Geophysics, Geosystems, 2023, 24 (3): e2022GC010655.

DOI

11
Maxwell A E , Von Herzen R P , Hsü K J , et al. Deep sea drilling in the south atlantic: Cores from the deep sea floor in the South Atlantic strongly support the hypothesis of seafloor spreading[J]. Science, 1970, 168 (3935): 1047- 1059.

DOI

12
Mayer L, Theyer F, Barron J, et al. Initial reports of the deep sea drilling project[J/OL]. Geology, Environmental Science, 1985, doi: 10.2973/DSDP.PROC.85.1985.

13
Luyendyk B, Davies T. Results of DSDP leg 26 and the geologic history of the southern Indian ocean[EB/OL]. [2024-12-30]. http://deepseadrilling.org/26/volume/dsdp26_36.pdf.

14
Ildefonse B , Christie D M , Mission Moho Workshop Steering Committee . Mission Moho workshop: Drilling through the oceanic crust to the mantle[J]. Scientific Drilling, 2007 (4): 11.

15
Frey F, Coffin M, Wallace P, et al. Leg 183 synthesis: Kerguelen plateau-broken ridge-a large igneous province[C]//Proceedings of the Ocean Drilling Program. College Station, TX, USA: Texas A&M University Ocean Drilling Program, 2003: 1-48.

16
方家松, 李江燕, 张利. 海底CORK观测30年: 发展、应用与展望[J]. 地球科学进展, 2017, 32 (12): 1297- 1306.

17
Becker K, Davis E E. A review of CORK designs and operations during the Ocean Drilling Program[C]//Proceedings of the IODP. IODP, 2005, doi: 10.2204/iodp.proc.301.104.2005.

18
Larsen H C , Mohn G , Nirrengarten M , et al. Rapid transition from continental breakup to igneous oceanic crust in the South China Sea[J]. Nature Geoscience, 2018, 11: 782- 789.

DOI

19
翦知湣, 党皓文. 解读过去、预告未来: IODP气候与海洋变化钻探研究进展与展望[J]. 地球科学进展, 2017, 32 (12): 1267- 1276.

20
Schlanger S , Jenkyns H . Cretaceous oceanic anoxic events: Causes and consequence[J]. Geologie En Mijnbouw, 1976, 55 (3/4): 179- 184.

21
Clift P , Betzler C , Clemens S , et al. A synthesis of monsoon exploration in the Asian marginal seas[J]. Scientific Drilling, 2022, 31: 1- 29.

DOI

22
Goldner A , Herold N , Huber M . Antarctic glaciation caused ocean circulation changes at the Eocene-Oligocene transition[J]. Nature, 2014, 511 (7511): 574- 577.

DOI

23
Nunes F , Norris R D . Abrupt reversal in ocean overturning during the Palaeocene/Eocene warm period[J]. Nature, 2006, 439 (7072): 60- 63.

DOI

24
Misra S , Froelich P N . Lithium isotope history of Cenozoic seawater: Changes in silicate weathering and reverse weathering[J]. Science, 2012, 335 (6070): 818- 823.

DOI

25
DeConto R M , Pollard D . Contribution of Antarctica to past and future sea-level rise[J]. Nature, 2016, 531 (7596): 591- 597.

DOI

26
Wang P X , Tian J , Lourens L J . Obscuring of long eccentricity cyclicity in Pleistocene oceanic carbon isotope records[J]. Earth and Planetary Science Letters, 2010, 290 (3/4): 319- 330.

27
田军. 新生代的气候节律: 赤道太平洋IODP320、321航次[J]. 地球科学进展, 2009, 24 (12): 1357- 1361.

28
Imachi H , Aoi K , Tasumi E , et al. Cultivation of methanogenic community from subseafloor sediments using a continuous-flow bioreactor[J]. The ISME Journal, 2011, 5 (12): 1913- 1925.

DOI

29
Lowery C M , Bralower T J , Owens J D , et al. Rapid recovery of life at ground zero of the end-Cretaceous mass extinction[J]. Nature, 2018, 558 (7709): 288- 291.

DOI

30
Li J T , Mara P , Schubotz F , et al. Recycling and metabolic flexibility dictate life in the lower oceanic crust[J]. Nature, 2020, 579 (7798): 250- 255.

DOI

31
Hüpers A , Torres M E , Owari S , et al. Release of mineralbound water prior to subduction tied to shallow seismogenic slip off Sumatra[J]. Science, 2017, 356 (6340): 841- 844.

32
Araki E , Saffer D M , Kopf A J , et al. Recurring and triggered slow-slip events near the trench at the Nankai trough subduction megathrust[J]. Science, 2017, 356 (6343): 1157- 1160.

DOI

33
拓守廷, 王文涛. 国际大洋钻探2050科学框架及其对未来大洋钻探发展的启示[J]. 地球科学进展, 2022, 37 (10): 1049- 1053.

34
冉皞, 张涛. 近十年大洋科学钻探进展与未来重点发展方向[J]. 中国地质, 2024, 51 (3): 1091- 1094.

35
徐晶晶, 张涛, 吴林强, 等. 大洋科学钻探特点与发展趋势: 基于国际大洋发现计划科学框架的对比分析[J]. 海洋开发与管理, 2023, 40 (3): 30- 38.

文章导航

/