This paper systematically reviews drilling operations and sample data accumulation under the International Ocean Drilling Program over five decades, highlighting its groundbreaking scientific achievements in geodynamics, climatic evolution, origin and evolution of life, and marine natural hazards. It further examines future trajectories for ocean drilling in operational frameworks, data management and utilization, and scientific goal formulation under evolving global contexts. Despite expanding drilling depths and scopes through half a century, vast unexplored oceanic regions and unresolved scientific challenges persist worldwide. With the retirement of the U.S. JOIDES Resolution, the joint European-Japanese initiation of IODP3, and China's newly commissioned 'Meng Xiang' drilling vessel, the IODP landscape faces transformative restructuring. Chinese scientists should align with national strategic priorities, track cutting-edge disciplines, strengthen international collaboration, leverage comparative advantages, and secure leadership in forthcoming scientific ocean drilling endeavors.
[1] 汪品先.大洋钻探五十年:回顾与前瞻[J].科学通报, 2018, 63(36):3868-3876.
[2] Becker K, Austin J, Exon N, et al. Fifty years of scientific ocean drilling[J]. Oceanography, 2019, 32(1):17-21.
[3] Smith D K, Exon N, Barriga F, et al. Ocean drilling:Forty years of international collaboration[J]. Eos, Transactions American Geophysical Union, 2010, 91(43):393-394.
[4] 王文涛,王金平,揭晓蒙,等.面向2024年后的中国引领的国际大洋钻探计划管理与运行机制思考[J].海洋科学, 2022, 46(2):127-134.
[5] Robinson R S, Tikoo S, Fulton P. Sea changes for scientific ocean drilling[J]. Physics Today, 2024, 77(2):28-34.
[6] 汪品先,翦知湣.探索南海深部的回顾与展望[J].中国科学:地球科学, 2019, 49(10):1590-1606.
[7] Backman J, Moran K, McInroy D, et al. Expedition 302 summary[J/OL]. Geology, Environmental Science, 2006, doi:10.2204/IODP.PROC.302.101.2006.
[8] National Academies of Sciences, Engineering, and Medicine. Progress and priorities in ocean drilling:In search of earth's past and future[M]. Washington, DC:The National Academies Press, 2024.
[9] 鲁铮博,史宇坤,华洪,等.国际大洋科学钻探的数据资源与共享现状[J].高校地质学报, 2020, 26(4):472-480.
[10] Sessa J, Fraass A, Levay L, et al. The extending ocean drilling pursuits (eODP) project:Synthesizing scientific ocean drilling data[J]. Geochemistry, Geophysics, Geosystems, 2023, 24(3):e2022GC010655.
[11] Maxwell A E, Von Herzen R P, Hsü K J, et al. Deep sea drilling in the south atlantic:Cores from the deep sea floor in the South Atlantic strongly support the hypothesis of seafloor spreading[J]. Science, 1970, 168(3935):1047-1059.
[12] Mayer L, Theyer F, Barron J, et al. Initial reports of the deep sea drilling project[J/OL]. Geology, Environmental Science, 1985, doi:10.2973/DSDP.PROC.85.1985.
[13] Luyendyk B, Davies T. Results of DSDP leg 26 and the geologic history of the southern Indian ocean[EB/OL].[2024-12-30] . http://deepseadrilling.org/26/volume/dsdp26_36.pdf.
[14] Ildefonse B, Christie D M, Mission Moho Workshop Steering Committee. Mission Moho workshop:Drilling through the oceanic crust to the mantle[J]. Scientific Drilling, 2007(4):11.
[15] Frey F, Coffin M, Wallace P, et al. Leg 183 synthesis:Kerguelen plateau-broken ridge-a large igneous province[C]//Proceedings of the Ocean Drilling Program. College Station, TX, USA:Texas A&M University Ocean Drilling Program, 2003:1-48.
[16] 方家松,李江燕,张利.海底CORK观测30年:发展、应用与展望[J].地球科学进展, 2017, 32(12):1297-1306.
[17] Becker K, Davis E E. A review of CORK designs and operations during the Ocean Drilling Program[C]//Proceedings of the IODP. IODP, 2005, doi:10.2204/iodp.proc.301.104.2005.
[18] Larsen H C, Mohn G, Nirrengarten M, et al. Rapid transition from continental breakup to igneous oceanic crust in the South China Sea[J]. Nature Geoscience, 2018, 11:782-789.
[19] 翦知湣,党皓文.解读过去、预告未来:IODP气候与海洋变化钻探研究进展与展望[J].地球科学进展, 2017, 32(12):1267-1276.
[20] Schlanger S, Jenkyns H. Cretaceous oceanic anoxic events:Causes and consequence[J]. Geologie En Mijnbouw, 1976, 55(3/4):179-184.
[21] Clift P, Betzler C, Clemens S, et al. A synthesis of monsoon exploration in the Asian marginal seas[J]. Scientific Drilling, 2022, 31:1-29.
[22] Goldner A, Herold N, Huber M. Antarctic glaciation caused ocean circulation changes at the Eocene-Oligocene transition[J]. Nature, 2014, 511(7511):574-577.
[23] Nunes F, Norris R D. Abrupt reversal in ocean overturning during the Palaeocene/Eocene warm period[J]. Nature, 2006, 439(7072):60-63.
[24] Misra S, Froelich P N. Lithium isotope history of Cenozoic seawater:Changes in silicate weathering and reverse weathering[J]. Science, 2012, 335(6070):818-823.
[25] DeConto R M, Pollard D. Contribution of Antarctica to past and future sea-level rise[J]. Nature, 2016, 531(7596):591-597.
[26] Wang P X, Tian J, Lourens L J. Obscuring of long eccentricity cyclicity in Pleistocene oceanic carbon isotope records[J]. Earth and Planetary Science Letters, 2010, 290(3/4):319- 330.
[27] 田军.新生代的气候节律:赤道太平洋IODP320、321航次[J].地球科学进展, 2009, 24(12):1357-1361.
[28] Imachi H, Aoi K, Tasumi E, et al. Cultivation of methanogenic community from subseafloor sediments using a continuous-flow bioreactor[J]. The ISME Journal, 2011, 5(12):1913-1925.
[29] Lowery C M, Bralower T J, Owens J D, et al. Rapid recovery of life at ground zero of the end-Cretaceous mass extinction[J]. Nature, 2018, 558(7709):288-291.
[30] Li J T, Mara P, Schubotz F, et al. Recycling and metabolic flexibility dictate life in the lower oceanic crust[J]. Nature, 2020, 579(7798):250-255.
[31] Hüpers A, Torres M E, Owari S, et al. Release of mineralbound water prior to subduction tied to shallow seismogenic slip off Sumatra[J]. Science, 2017, 356(6340):841-844.
[32] Araki E, Saffer D M, Kopf A J, et al. Recurring and triggered slow-slip events near the trench at the Nankai trough subduction megathrust[J]. Science, 2017, 356(6343):1157- 1160.
[33] 拓守廷,王文涛.国际大洋钻探2050科学框架及其对未来大洋钻探发展的启示[J].地球科学进展, 2022, 37(10):1049-1053.
[34] 冉皞,张涛.近十年大洋科学钻探进展与未来重点发展方向[J].中国地质, 2024, 51(3):1091-1094.
[35] 徐晶晶,张涛,吴林强,等.大洋科学钻探特点与发展趋势:基于国际大洋发现计划科学框架的对比分析[J].海洋开发与管理, 2023, 40(3):30-38.