科技评论

DeepSeek技术创新与通用人工智能发展趋势

  • 吴文峻 , 1, 2 ,
  • 廖星创 1 ,
  • 赵金琨 1
展开
  • 1. 北京航空航天大学复杂关键软件环境全国重点实验室, 北京 100191
  • 2. 杭州市北京航空航天大学国际创新研究院, 杭州 311115

吴文峻, 教授, 研究方向为可信智能、群体智能、AI for Science, 电子信箱:

收稿日期: 2025-02-14

  网络出版日期: 2025-04-19

版权

版权所有,未经授权,不得转载。

DeepSeek: Technological innovations and development trends toward artificial general intelligence

  • Wenjun WU , 1, 2 ,
  • Xingchuang LIAO 1 ,
  • Jinkun ZHAO 1
Expand
  • 1. State Key Laboratory of Complex and Critical Software Environment, Beihang University, Beijing 100191, China
  • 2. International Innovation Institute, Beihang University, Hangzhou 311115, China

Received date: 2025-02-14

  Online published: 2025-04-19

Copyright

All rights reserved. Unauthorized reproduction is prohibited.

摘要

概述了DeepSeek在通用人工智能领域的最新进展,重点讨论了其在大语言模型、推理技术方面的创新。DeepSeek-V3引入了新的模型架构和算法设计,基于相对有限的智能硬件,对模型训练方法进行了全面和深入的优化,显著提升了模型训练效率。在推理技术方面,DeepSeek-R1创新性地结合了强化学习(RL)与监督微调(SFT),提升了推理深度和逻辑推理能力。结合DeepSeek的创新工作,讨论了通用人工智能发展趋势,重点涉及3个问题:开源开放生态对发展通用人工智能的作用;依赖于模型规模扩展的“Neural Scaling Law”是否还能发挥作用;如何基于DeepSeek这类基座模型,以“通专结合”的方式实现行业大模型的落地等。

本文引用格式

吴文峻 , 廖星创 , 赵金琨 . DeepSeek技术创新与通用人工智能发展趋势[J]. 科技导报, 2025 , 43(6) : 14 -20 . DOI: 10.3981/j.issn.1000-7857.2025.02.00175

1
Liu A , Feng B , Xue B , et al. DeepSeek-V3 technical report[J]. Computer Science, 2024,

DOI

2
DeepSeek-AI , Guo D Y , Yang D J , et al. DeepSeek-R1:Incentivizing reasoning capability in LLMs via reinforcement learning[J]. Computer Science, 2025,

DOI

3
Jaech A , Kalai A , Lerer A , et al. Openai o1 system card[J]. Computer Science, 2024,

DOI

4
Vaswani A . Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017,

DOI

5
Huang L , Yu W J , Ma W T , et al. A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions[J]. ACM Transactions on Information Systems, 2025, 43 (2): 1- 55.

6
Shao Z H , Wang P Y , Zhu Q H , et al. DeepSeekMath: Pushing the limits of mathematical reasoning in open lang-uage models[J]. Computer Science, 2024,

DOI

7
Xin H J , Ren Z Z , Song J X , et al. DeepSeek-prover-V1.5:Harnessing proof assistant feedback for reinforcement learning and Monte-Carlo tree searc[J]. Computer Science, 2024,

DOI

8
Achiam J , Adler S , Agarwal S , et al. Gpt-4 technical report[J]. Computer Science, 2023,

DOI

9
Team G , Anil R , Borgeaud S , et al. Gemini: A family of highly capable multimodal models[J]. Computer Science, 2023,

DOI

10
Schulman J , Wolski F , Dhariwal P , et al. Proximal policy optimization algorithms[J]. Computer Science, 2017,

DOI

11
de Moura L, Ullrich S. The lean 4 theorem prover and programming language[C]//Automated Deduction-CADE 28: 28th International Conference on Automated Deduction, Virtual Event. Cham: Springer International Publishing, 2021: 625-635.

12
Kaplan J , McCandlish S , Henighan T , et al. Scaling laws for neural language models[J]. Computer Science, 2020,

DOI

13
Touvron H , Lavril T , Izacard G , et al. LLaMA: Open and efficient foundation language models[J]. Computer Science, 2023,

DOI

14
Jones N . The AI revolution is running out of data. What can researchers do?[J]. Nature, 2024, 636 (8042): 290- 292.

DOI

15
Liu Z H , Wang Y H , Han K , et al. Post-training quantization for vision transformer[J]. Advances in Neural Information Processing Systems, 2021, 34: 28092- 28103.

文章导航

/