特色专题

新型氢储运技术发展及应用现状

  • 张岩 , 1 ,
  • 王旭升 2 ,
  • 林羲 2 ,
  • 晏嘉泽 1 ,
  • 孙玉杰 1 ,
  • 姜方 3 ,
  • 邹建新 , 2, *
展开
  • 1. 北京国氢中联氢能科技研究院有限公司, 北京 100007
  • 2. 上海市氢科学重点实验室 & 上海交通大学氢科学中心, 上海 200240
  • 3. 上海氢枫能源技术有限公司, 上海 201100
邹建新(通信作者),教授,研究方向为储运氢技术,电子信箱:

张岩,高级工程师,研究方向为储运氢技术,电子信箱:

收稿日期: 2024-08-12

  网络出版日期: 2025-05-13

基金资助

国家自然科学基金项目(52401386)

中国氢能联盟2023政研项目(CHA2023RP003)

版权

版权所有,未经授权,不得转载。

Development and application status of new hydrogen storage and transportation technologies

  • Yan ZHANG , 1 ,
  • Xusheng WANG 2 ,
  • Xi LIN 2 ,
  • Jiaze YAN 1 ,
  • Yujie SUN 1 ,
  • Fang JIANG 3 ,
  • Jianxin ZOU , 2, *
Expand
  • 1. Beijing Guohydro Zhonglian Hydrogen Energy Technology Research Institute Co. Ltd., Beijing 100007, China
  • 2. Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, China
  • 3. Shanghai Qingfeng Energy Technology Co. Ltd., Shanghai 201100, China

Received date: 2024-08-12

  Online published: 2025-05-13

Copyright

All rights reserved. Unauthorized reproduction is prohibited.

摘要

重点分析了固态储氢、有机液态储氢、甲醇储氢和氨储氢等多种新型储运氢技术特点、发展现状、经济成本及关键技术瓶颈,探讨了其未来发展方向,并横向对比了不同氢储运技术的经济性水平与应用前景。当前,固态储氢技术已在部分领域实现示范应用,但其大规模产业化仍面临高成本和高能耗等挑战。有机液态储氢技术虽然操作便捷,但受限于脱氢温度高、释氢速率低及对贵金属催化剂的依赖。绿色甲醇和绿氨储氢技术在能耗、安全性和经济性方面仍存在一定制约。不同储运技术各具优势与局限,需要综合考虑氢储运量、运输距离、安全性、碳排放及具体应用场景,以确定最优的技术路径和应用方案。

本文引用格式

张岩 , 王旭升 , 林羲 , 晏嘉泽 , 孙玉杰 , 姜方 , 邹建新 . 新型氢储运技术发展及应用现状[J]. 科技导报, 2025 , 43(7) : 67 -78 . DOI: 10.3981/j.issn.1000-7857.2024.08.00986

1
Hassan Q , Algburi S , Jaszczur M , et al. Hydrogen role in energy transition: A comparative review[J]. Process Safety and Environmental Protection, 2024, 184: 1069- 1093.

DOI

2
彭苏萍. 中国氢能源与燃料电池发展战略及未来展望[J]. 中国工业和信息化, 2023 (4): 36- 41.

3
王旭升, 邹建新, 林羲, 等. 2024年绿氢制储运技术研究热点回眸[J]. 科技导报, 2025, 43 (1): 47- 61.

DOI

4
邹建新. 氢气储存和运输[M]. 北京: 机械工业出版社, 2023.

5
俞红梅, 邵志刚, 侯明, 等. 电解水制氢技术研究进展与发展建议[J]. 中国工程科学, 2021, 23 (2): 146- 152.

6
张秋雨, 任莉, 李映辉, 等. 镁基固态储氢材料研究进展[J]. 科技导报, 2022, 40 (23): 6- 23.

DOI

7
邢承治, 赵明, 尚超, 等. 有机液体载氢储运技术研究进展及应用场景[J]. 储能科学与技术, 2024, 13 (2): 643- 651.

8
Sun B H , Zhao H , Dong X Z , et al. Current challenges in the utilization of hydrogen energy-a focused review on the issue of hydrogen-induced damage and embrittlement[J]. Advances in Applied Energy, 2024, 14: 100168.

9
胡玉真, 王敏, 李灵东, 等. 我国氨氢动力海上船舶创新发展研究[J]. 中国工程科学, 2023, 25 (2): 133- 146.

10
张嘉祺. Mo基高效催化剂对MgH2储氢体系的复合改性及作用机理研究[D]. 镇江: 江苏科技大学, 2023.

11
刘木子, 史柯柯, 赵强, 等. 固体储氢材料的研究进展[J]. 化工进展, 2023, 42 (9): 4746- 4769.

12
Abdechafik E H , Ait Ousaleh H , Mehmood S , et al. An analytical review of recent advancements on solid-state hydrogen storage[J]. International Journal of Hydrogen Energy, 2024, 52: 1182- 1193.

13
邹建新, 丁文江. 2023年镁基储氢材料研究热点回眸[J]. 科技导报, 2024, 42 (1): 204- 216.

DOI

14
Wang H B , Du M , Wang Q , et al. Enhancement of hydrogen storage performance in shell and tube metal hydride tank for fuel cell electric forklift[J]. International Journal of Hydrogen Energy, 2023, 48 (61): 23568- 23580.

15
Manai M S , Leturia M , Pohlmann C , et al. Comparative study of different storage bed designs of a solid-state hydrogen tank[J]. Journal of Energy Storage, 2019, 26: 101024.

16
Drawer C , Lange J , Kaltschmitt M . Metal hydrides for hydrogen storage-Identification and evaluation of stationary and transportation applications[J]. Journal of Energy Storage, 2024, 77: 109988.

17
Parashar S , Muthukumar P , Soti A K . Design optimization and numerical investigation of multi tube metal hydride reactor for large capacity hydrogen storage application[J]. Thermal Science and Engineering Progress, 2024, 49: 102468.

18
Sreeraj R , Aadhithiyan A K , Anbarasu S . Integration of thermal augmentation methods in hydride beds for metal hydride based hydrogen storage systems: Review and recommendation[J]. Journal of Energy Storage, 2022, 52: 105039.

19
Mostafavi S A , Hajabdollahi Z , Ilinca A . Multi-objective optimization of metal hydride hydrogen storage tank with phase change material[J]. Thermal Science and Engineering Progress, 2022, 36: 101514.

20
Aadhithiyan A K , Bhargav K V J , Sreeraj R , et al. Multiobjective design optimization of hydride hydrogen storage structured with finned helical tubes based on energetic and economic analyses[J]. Journal of Energy Storage, 2023, 64: 107194.

21
刘海镇, 徐丽, 王新华, 等. 电网氢储能场景下的固态储氢系统及储氢材料的技术指标研究[J]. 电网技术, 2017, 41 (10): 3376- 3384.

22
Ren L , Li Y H , Lin X , et al. Promoting hydrogen industry with high-capacity Mg-based solid-state hydrogen storage materials and systems[J]. Frontiers in Energy, 2023, 17 (3): 320- 323.

23
McPhy Energy. The potential of Solid Hydrogen for Renewable Energy Storage & valorization[EB/OL]. [2024-08-12]. https://www.asprom.com/hydro/mcphy.

24
Chu C Y , Wu K , Luo B B , et al. Hydrogen storage by liquid organic hydrogen carriers: Catalyst, renewable carrier, and technology-A review[J]. Carbon Resources Conversion, 2023, 6 (4): 334- 351.

25
Abdin Z , Tang C G , Liu Y , et al. Large-scale stationary hydrogen storage via liquid organic hydrogen carriers[J]. iScience, 2021, 24 (9): 102966.

26
Perreault P , van Hoecke L , Pourfallah H , et al. Critical challenges towards the commercial rollouts of a LOHC-based H2 economy[J]. Current Opinion in Green and Sustainable Chemistry, 2023, 41: 100836.

27
Brückner N , Obesser K , Bösmann A , et al. Evaluation of industrially applied heat-transfer fluids as liquid organic hydrogen carrier systems[J]. Chem Sus Chem, 2014, 7 (1): 229- 235.

28
中国化学: 全球首套常温常压有机液体储氢加注一体化示范项目已具备商用条件[EB/OL]. (2023-07-11)[2024-07-25]. https://baijiahao.baidu.com/s?id=1771090190176907845&wfr=spider&for=pc.

29
Niermann M , Drünert S , Kaltschmitt M , et al. Liquid organic hydrogen carriers (LOHCs)-techno-economic analysis of LOHCs in a defined process chain[J]. Energy & Environmental Science, 2019, 12 (1): 290- 307.

30
Sage V , Patel J , Hazewinkel P , et al. Recent progress and techno-economic analysis of liquid organic hydrogen carriers for Australian renewable energy export-A critical review[J]. International Journal of Hydrogen Energy, 2024, 56: 1419- 1434.

31
Tsogt N , Gbadago D Q , Hwang S . Exploring the potential of liquid organic hydrogen carrier (LOHC) system for efficient hydrogen storage and transport: A techno-economic and energy analysis perspective[J]. Energy Conversion and Management, 2024, 299: 117856.

32
Djermouni M , Ouadha A . Thermodynamic analysis of methanol, ammonia, and hydrogen as alternative fuels in HCCI engines[J]. International Journal of Thermofluids, 2023, 19: 100372.

33
丁宁, 陈千惠, 刘丹禾, 等. 制储氢技术经济性分析与前景展望[J]. 洁净煤技术, 2023, 29 (10): 126- 144.

34
最新甲醇产量20强公布!10家大企业集团产能占据半壁江山[EB/OL]. (2022-07-21)[2024-07-25]. http://www.nwrici.com/Html/News/news4/2559.Html.

35
Pratschner S , Radosits F , Ajanovic A , et al. Techno-economic assessment of a power-to-green methanol plant[J]. Journal of CO2 Utilization, 2023, 75: 102563.

36
Samimi F , Hamedi N , Rahimpour M R . Green methanol production process from indirect CO2 conversion: RWGS reactor versus RWGS membrane reactor[J]. Journal of Environmental Chemical Engineering, 2019, 7 (1): 102813.

37
黄鑫, 滕霖, 聂超飞, 等. 液氨/甲醇/成品油顺序输送技术研究进展[J]. 油气储运, 2023, 42 (12): 1337- 1351.

38
全球绿色氨市场2030年前将达到54亿美元[EB/OL]. (2022-04-11)[2024-07-25]. http://www.sinopecnews.com.cn/xnews/content/2022-04/11/content_7027385.html.

39
滕霖, 林崴, 尹鹏博, 等. 碳中和目标下绿氨终端站储运技术发展现状及趋势[J]. 油气储运, 2024, 43 (1): 1- 11.

40
吉林省发展和改革委员会. 吉林省发展改革委关于大安风光制绿氢合成氨一体化示范项目(制氢合成氨部分)节能报告的审查意见[EB/OL]. (2023-08-04)[2024-07-25]. https://xxgk.jl.gov.cn/zcbm/fgw/xxgkmlqy/202308/t20230804_8775981.html.

41
Fujimura Y. Green ammonia production system[M] //Aika K I, Kobayashi H, eds. CO2 Free Ammonia as an Energy Carrier. Singapore: Springer Nature Singapore, 2022: 255-261.

42
IRENA. Green hydrogen supply a guide to policy making [EB/OL]. [2024-07-25]. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2021/May/IRENA_Green_Hydrogen_Supply_2021.

43
Nemmour A , Inayat A , Janajreh I , et al. Green hydrogenbased E-fuels (E-methane, E-methanol, E-ammonia) to support clean energy transition: A literature review[J]. International Journal of Hydrogen Energy, 2023, 48 (75): 29011- 29033.

44
Møller K T , Jensen T R , Akiba E , et al. Hydrogen -A sustainable energy carrier[J]. Progress in Natural Science: Materials International, 2017, 27 (1): 34- 40.

文章导航

/