研究论文

极端条件下的扫描探针显微镜技术研究及应用

  • 冯启元 , 1 ,
  • 孟文杰 1 ,
  • 王纪浩 1 ,
  • 侯玉斌 1 ,
  • 张晶 1 ,
  • 陆轻铀 , 1, 2, 3, *
展开
  • 1. 中国科学院合肥物质科学研究院, 强磁场科学中心, 合肥 230031
  • 2. 中国科学技术大学, 合肥微尺度物质科学国家研究中心, 合肥 230026
  • 3. 中国科学技术大学, 先进光子科学技术安徽省实验室, 合肥 230026
陆轻铀(通信作者),研究员,研究方向为极端与恶劣条件原子分辨扫描隧道、磁力、原子力显微镜自主研制,电子信箱:

冯启元,副研究员,研究方向为极端与恶劣条件下高灵敏磁力显微镜的自主研制,电子信箱:

收稿日期: 2024-07-15

  网络出版日期: 2025-05-13

基金资助

国家重点研发计划项目(2023YFA1607701)

国家自然科学基金项目(12374225)

国家自然科学基金项目(12004386)

版权

版权所有,未经授权,不得转载。

Development of nano and atomic scale real-space imaging techniques under extreme conditions

  • Qiyuan FENG , 1 ,
  • Wenjie MENG 1 ,
  • Jihao WANG 1 ,
  • Yubin HOU 1 ,
  • Jing ZHANG 1 ,
  • Qingyou LU , 1, 2, 3, *
Expand
  • 1. High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
  • 2. Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
  • 3. Anhui Provincial Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230026, China

Received date: 2024-07-15

  Online published: 2025-05-13

Copyright

All rights reserved. Unauthorized reproduction is prohibited.

摘要

具有超高分辨率的扫描探针显微镜(Scanning Probe Microscope, SPM)是纳米科技、量子现象揭示的重要手段,其应用范围广泛,涵盖了材料科学、物理、化学、生物学等多个领域。SPM重要性体现在其超高分辨率和多功能性,能提供原子级分辨率。综述了近年SPM领域与极端条件集成的进展、发展趋势及存在问题。此外,SPM还能进行力学、磁学、电学等多种基本测量,已成为研究微观世界的多功能平台。当前,在材料性能不断提升但似乎难以取得颠覆性进展的情况下,利用极端环境发现新材料和新物理来实现突破已成为前进方向。为此,SPM与极端外部物理场的结合,如超高磁场、超低温和高真空环境的融合已成为重要发展方向。

本文引用格式

冯启元 , 孟文杰 , 王纪浩 , 侯玉斌 , 张晶 , 陆轻铀 . 极端条件下的扫描探针显微镜技术研究及应用[J]. 科技导报, 2025 , 43(7) : 100 -115 . DOI: 10.3981/j.issn.1000-7857.2024.09.01367

1
Wang Q , Hou Y B , Wang J T , et al. A high-stability scanning tunneling microscope achieved by an isolated tiny scanner with low voltage imaging capability[J]. Review of Scientific Instruments, 2013, 84 (11): 4829716.

2
Zhang C , Zhang Y , Yuan X , et al. Quantum Hall effect based on Weyl orbits in Cd3As2[J]. Nature, 2019, 565 (7739): 331- 336.

DOI

3
Novoselov K S , Jiang Z , Zhang Y , et al. Room-temperature quantum hall effect in graphene[J]. Science, 2007, 315 (5817): 1379.

DOI

4
Ali M N , Xiong J , Flynn S , et al. Large, non-saturating magnetoresistance in WTe2[J]. Nature, 2014, 514 (7521): 205- 208.

DOI

5
Fernández-Lomana M , Wu B L , Martín-Vega F , et al. Millikelvin scanning tunneling microscope at 20/22 T with a graphite enabled stick-slip approach and an energy resolution below 8μeV: Application to conductance quantization at 20 T in single atom point contacts of Al and Au and to the charge density wave of 2H-NbSe2[J]. Review of Scientific Instruments, 2021, 92 (9): 0059394.

6
Tao W , Singh S , Rossi L , et al. A low-temperature scanning tunneling microscope capable of microscopy and spectroscopy in a bitter magnet at up to 34 T[J]. Review of Scientific Instruments, 2017, 88 (9)

DOI

7
Meng W J , Guo Y , Hou Y B , et al. Atomic resolution scanning tunneling microscope imaging up to 27 T in a watercooled magnet[J]. Nano Research, 2015, 8 (12): 3898- 3904.

DOI

8
Rossi L , Gerritsen J W , Nelemans L , et al. An ultra-compact low temperature scanning probe microscope for magnetic fields above 30 T[J]. Review of Scientific Instruments, 2018, 89 (11): 5046578.

9
Meng W J , Zhao K S , Wang J H , et al. 30 T scanning tunnelling microscope in a hybrid magnet with essentially non-metallic design[J]. Ultramicroscopy, 2020, 212: 112975.

DOI

10
Zhao K S , Zhang J , Meng W J , et al. Cryogenic spectroscopic imaging scanning tunnelling microscope in a watercooled magnet down to 1.7 K[J]. Ultramicroscopy, 2023, 253: 113773.

DOI

11
Wang J H , Li W X , Zheng S F , et al. Atomically resolved low-temperature scanning tunneling microscope operating in a 22 T water-cooled magnet[J]. Ultramicroscopy, 2023, 245: 113668.

DOI

12
Xia Z G , Wang J H , Hou Y B , et al. A high stability and repeatability electrochemical scanning tunneling microscope[J]. Review of Scientific Instruments, 2014, 85 (12): 4902975.

13
Wang J H , Zhang L , Hu C , et al. Sub-molecular features of single proteins in solution resolved with scanning tunneling microscopy[J]. Nano Research, 2016, 9 (9): 2551- 2560.

DOI

14
Zheng Z , Wang J H , Chen P Y , et al. Using L-STM to directly visualize enzymatic self-assembly/disassembly of nanofibers[J]. Nanoscale, 2016, 8 (33): 15142- 15146.

DOI

15
Zhang L , Wang J H , Wang H L , et al. Moderate and strong static magnetic fields directly affect EGFR kinase domain orientation to inhibit cancer cell proliferation[J]. Oncotarget, 2016, 7 (27): 41527- 41539.

16
Wang L F , Feng Q Y , Kim Y , et al. Ferroelectrically tunable magnetic skyrmions in ultrathin oxide heterostructures[J]. Nature Materials, 2018, 17 (12): 1087- 1094.

DOI

17
Chen X Z , Fan X D , Li L , et al. Moiré engineering of electronic phenomena in correlated oxides[J]. Nature Physics, 2020, 16: 631- 635.

DOI

18
Wang L F , Feng Q Y , Lee H G , et al. Controllable thickness inhomogeneity and berry curvature engineering of anomalous Hall effect in SrRuO3 ultrathin films[J]. Nano Letters, 2020, 20 (4): 2468- 2477.

DOI

19
Feng Q Y , Jin F , Zhou H B , et al. Induced formation of structural domain walls and their confinement on phase dynamics in strained manganite thin films[J]. Advanced Materials, 2018, 30 (52): 1805353.

DOI

20
Lin Z Y , Choi J H , Zhang Q , et al. Flatbands and emergent ferromagnetic ordering in Fe3Sn2 kagome lattices[J]. Physical Review Letters, 2018, 121 (9): 096401.

DOI

21
Sheng Z G , Feng Q Y , Zhou H B , et al. Visualization of electronic multiple ordering and its dynamics in high magnetic field: Evidence of electronic multiple ordering crystals[J]. ACS Applied Materials & Interfaces, 2018, 10 (23): 20136- 20141.

22
Liu X H , Feng Q Y , Zhang D , et al. Topological spin textures in a non-collinear antiferromagnet system[J]. Advanced Materials, 2023, 35 (26): 2211634.

DOI

23
Li Y , Feng Q Y , Li S H , et al. An artificial skyrmion platform with robust tunability in synthetic antiferromagnetic multilayers[J]. Advanced Functional Materials, 2020, 30 (3): 1907140.

DOI

文章导航

/