特色专题

面向超高清视频的算力网络架构及关键技术

  • 周旭 , 1 ,
  • 吴红 2 ,
  • 张伟 3 ,
  • 宋俊平 1
展开
  • 1. 中国科学院计算机网络信息中心,北京 100083
  • 2. 湖南芒果融创科技有限公司,长沙 415500
  • 3. 国家广播电视总局广播电视科学研究院,北京 100866

周旭,研究员,研究方向为计算机网络体系结构、5G/6G移动网络、网络人工智能等,电子信箱:

收稿日期: 2024-08-21

  网络出版日期: 2025-06-13

版权

版权所有,未经授权,不得转载。

Computing power network architecture and key technologies for UHD video

  • Xu ZHOU , 1 ,
  • Hong WU 2 ,
  • Wei ZHANG 3 ,
  • Junping SONG 1
Expand
  • 1. Computer Network Information Center, Chinese Academy of Sciences, Beijing 100083, China
  • 2. Hunan Mango Innocreative Technology Co., Ltd., Changsha 415500, China
  • 3. Academy of Broadcasting Science, NRTA, Beijing 100866, China

Received date: 2024-08-21

  Online published: 2025-06-13

Copyright

All rights reserved. Unauthorized reproduction is prohibited.

摘要

超高清视频是中国视听产业重要发展方向之一,国家相关部门也出台了一系列政策,鼓励和支持超高清视频产业的发展。超高清视频的采集、传输、制作、播出过程,尤其是融合了ChatGPT、Sora等先进人工智能内容生成技术后,呈现出典型的大带宽、高算力、低时延特征,令算力和网络基础设施面临严峻考验。基于超高清视频典型需求和计算、网络技术最新发展趋势,提出了面向超高清视频的算力网络架构,综合运用异构算力资源组网与安全传输技术、超高清视频业务需求建模与资源编排技术、“数算模”联合调度与路由规划技术、超高清视频高速传输技术等算力网络关键技术,实现全国范围内异构算力的汇聚、组网,满足超高清视频采、编、播等各环节业务处理对多样化算力和网络传输的需求。

本文引用格式

周旭 , 吴红 , 张伟 , 宋俊平 . 面向超高清视频的算力网络架构及关键技术[J]. 科技导报, 2025 , 43(9) : 38 -47 . DOI: 10.3981/j.issn.1000-7857.2024.08.01034

1
Keller D, Rao R R R, Raake A. Assessing video quality differences for 8K/UHD-2 and 4K/UHD-1 HDR videos depending on viewing distance[J/OL]. Authorea Preprints, 2024[2024-10-09]. https://www.techrxiv.org/doi/full/10.36227/techrxiv.172297401.16801936.

2
超高清视频产业规模超3万亿元[EB/OL]. (2023-06-03) [2024-10-09]. http://finance.people.com.cn/n1/2023/0603/c1004-40005477.html.

3
Seetzen H, Heidrich W, Stuerzlinger W, et al. High dynamic range display systems[M]//Seminal Graphics Papers: Pushing the Boundaries. New York: ACM, 2023: 39-47.

4
Boren B. History of 3D sound[M]//Immersive Sound. New York, London: Routledge, 2017: 40-62.

5
中国政府网. 中共中央办公厅国务院办公厅印发《关于推进实施国家文化数字化战略的意见》 [EB/OL]. (2022-05-22)[2024-10-09]. https://www.gov.cn/zhengce/2022-05/22/content_5691759.htm.

6
Duan L Y , Liu J Y , Yang W H , et al. Video coding for machines: A paradigm of collaborative compression and intelligent analytics[J]. IEEE Transactions on Image Processing, 2020,

DOI

7
Zhong L J , Ji X , Wang Z X , et al. A Q-learning driven energy- aware multipath transmission solution for 5G media services[J]. IEEE Transactions on Broadcasting, 2022, 68 (2): 559- 571.

DOI

8
Yue L W , Shen H F , Li J , et al. Image super-resolution: The techniques, applications, and future[J]. Signal Processing, 2016, 128: 389- 408.

DOI

9
Zhang M L, Sun X L, Zhu Q Q, et al. A survey of hyperspectral image super-resolution technology[C]//Proceedings of IEEE International Geoscience and Remote Sensing Symposium IGARSS. Brussels: IEEE, 2021: 4476-4479.

10
Ma S W , Gao J L , Wang R F , et al. Overview of intelligent video coding: From model-based to learning-based approaches[J]. Visual Intelligence, 2023, 1 (1): 15.

DOI

11
Zhang Z X , Wen F , Sun Z D , et al. Artificial intelligence-enabled sensing technologies in the 5G/Internet of Things era: From virtual reality/augmented reality to the digital twin[J]. Advanced Intelligent Systems, 2022, 4 (7): 2100228.

DOI

12
Liu Y X, Zhang K, Li Y, et al. Sora: A review on background, technology, limitations, and opportunities of large vision models[EB/OL]. 2024: 2402.17177[2024-10-09]. https://arxiv.org/abs/2402.17177v3.

13
Nightingale J , Salva-Garcia P , Calero J M A , et al. 5G-QoE: QoE modelling for ultra-HD video streaming in 5G networks[J]. IEEE Transactions on Broadcasting, 2018, 64 (2): 621- 634.

DOI

14
中华人民共和国商务部. 国家发改委首次明确"新基建"范围[EB/OL]. (2020-04-20) [2024-10-09]. https://m.mofcom.gov.cn/article/i/jyjl/e/202004/20200402957398.shtml.

15
算力基础设施高质量发展行动计划[EB/OL]. (2023-10-09) [2024-10-09]. https://www.gov.cn/zhengce/zhengceku/202310/P020231009520949915888.pdf.

16
关于深入实施"东数西算"工程加快构建全国一体化算力网的实施意见[EB/OL]. [2024-10-09]. https://www.gov.cn/zhengce/zhengceku/202401/content_6924596.htm.

17
Comsa I S , Muntean G M , Trestian R . An innovative machine-learning-based scheduling solution for improving live UHD video streaming quality in highly dynamic network environments[J]. IEEE Transactions on Broadcasting, 2020, 67 (1): 212- 224.

18
Salva-Garcia P , Alcaraz-Calero J M , Alaez R M , et al. 5G-UHD: Design, prototyping and empirical evaluation of adaptive Ultra-High-Definition video streaming based on scalable H. 265 in virtualised 5G networks[J]. Computer Communications, 2018, 118: 171- 184.

DOI

19
Huang S L , Izquierdo E , Hao P W . Bandwidth-efficient packet scheduling for live streaming with network coding[J]. IEEE Transactions on Multimedia, 2016, 18 (4): 752- 763.

DOI

20
Shi W X , Li Q , Yu Q , et al. A survey on intelligent solutions for increased video delivery quality in cloud-edge- end networks[J]. IEEE Communications Surveys & Tutorials, 2024, 3427360.

21
Almasan P , Suárez-Varela J , Rusek K , et al. Deep reinforcement learning meets graph neural networks: Exploring a routing optimization use case[J]. Computer Communications, 2022, 196: 184- 194.

DOI

22
Liang C S , Du H Y , Sun Y , et al. Generative AI-driven semantic communication networks: Architecture, technologies, and applications[J]. IEEE Transactions on Cognitive Communications and Networking, 2023, 11 (1): 27- 47.

23
Farrow P. Optimising networks for ultra-high definition video[D]. Colchester, East of England, UK: University of Essex, 2016.

24
Yuan X J, Pu L J, Xu X H, et al. Streaming-aware cellular resource allocation for UHD video streaming over ultra dense network[C]//Proceedings of IEEE Wireless Communications and Networking Conference (WCNC). Nanjing: IEEE, 2021: 1-7.

25
Nosheen S, Khan J Y. High throughput and QoE fairness algorithms for HD video transmission over IEEE802.11ac networks[C]//Proceedings of International Conference on Computing, Networking and Communications (ICNC). Big Island: IEEE, 2020: 84-89.

文章导航

/