特色专题

智算中心高性能网络技术研究进展

  • 任杰 ,
  • 刘畅 ,
  • 韩博文 ,
  • 文晨阳 ,
  • 徐博华 ,
  • 曹畅
展开
  • 中国联合网络通信有限公司研究院, 北京 100176

任杰,工程师,研究方向为新型数据中心网络协议,电子信箱:

收稿日期: 2024-08-21

  网络出版日期: 2025-06-13

版权

版权所有,未经授权,不得转载。

Research progress on technologies of high–performance network in artificial intelligence data center

  • Jie REN ,
  • Chang LIU ,
  • Bowen HAN ,
  • Chenyang WEN ,
  • Bohua XU ,
  • Chang CAO
Expand
  • Research Institute of China United Network Communications Co., Ltd., Beijing 100176, China

Received date: 2024-08-21

  Online published: 2025-06-13

Copyright

All rights reserved. Unauthorized reproduction is prohibited.

摘要

随着ChatGPT引领的大模型与AI产业的爆发式发展,大规模分布式计算成为大模型训练常用模式,对应智算算力需求激增。旨在形成智算中心高性能网络技术体系,推动智算中心高性能网络技术持续发展。针对智算中心高性能网络内关键技术进行技术研究,首先,针对大规模智算业务承载场景,分析了智算中心提供高性能网络在传输协议层面、组网层面、管控运维层面的核心需求。随后依据所述需求,详细研究了智算中心高性能网络不同网络层的演进需求及智算中心高性能网络组网、面向智算中心网络的新型负载均衡协议与拥塞控制协议、新型网络管控及运维等领域的关键技术,对不同场景需求提供技术指导。其次,从网络协议发展与全光网络2个层面展开,分析了智算中心网络的未来导向与发展趋势。若要建立完善智算中心高性能网络技术体系,智算网络自身需提供足够的网络性能,如提供近似无丢包的网络环境、足够的互联能力并解决分布式存储场景下的存储性能瓶颈等;同时智算中心高性能网络的发展需要规范组网方案、高性能的新型负载均衡与拥塞控制协议、新型智慧化管控运维技术等方面关键技术的融合协同,提高运营效率;智算中心高性能网络需提供全局范围内设备与资源感知、分配、调度、运维的网络,并提供高性能无损传输能力。

本文引用格式

任杰 , 刘畅 , 韩博文 , 文晨阳 , 徐博华 , 曹畅 . 智算中心高性能网络技术研究进展[J]. 科技导报, 2025 , 43(9) : 62 -75 . DOI: 10.3981/j.issn.1000-7857.2024.08.01038

1
International Data Corporation. 2023—2024中国人工智能计算力发展评估报告[R]. 北京: IDC, 2023.

2
王祺, 李冬露. 2023年中国人工智能产业研究报告[R]. 上海: 艾瑞咨询研究院, 2024.

3
中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[EB/OL]. (2021-03-12) [2024-08-06]. https://www.gov.cn/xinwen/2021-03/13/content_5592681.htm.

4
工业和信息化部. 算力基础设施高质量发展行动计划[EB/OL]. (2023-10-08) [2024-08-06]. https://www.gov.cn/zhengce/zhengceku/202310/P020231009520949915888.pdf.

5
Infiniband Trade Association. Infiniband architecture volume 1, general specifications, release 1.4[EB/OL]. [2024-08-06]. http://47.92.214.21:8888/rdma/IB%20Specification%20Vol%201-Release-1.4-2020-04-07_ib_spec_vol1.pdf.

6
Infiniband Trade Association. Infiniband architecture specifi-cation release 1.2. 1 annex A16: RoCE[EB/OL]. [2024-08-10]. https://www.afs.enea.it/asantoro/V1r1_2_1.Release_12062007.pdf.

7
Infiniband Trade Association. Infiniband architecture specifi-cation release 1.2. 1 annex A17: RoCEv2[EB/OL]. [2024-08-15]. https://websearch.excite.co.jp/?q=InfiniBand+Architec-ture+Specification+Release+1.2.1+Annex+A17%3A+RoCEv2&page=1.

8
Internet Engineering Task Force. The architecture of direct data placement (DDP) and Remote direct memory access (RDMA) on Internet protocols[EB/OL]. [2024-08-15]. https://datatracker.ietf.org/doc/html/rfc4296.

9
Kim J , Dally W J , Scott S , et al. Technology-driven, highly- scalable dragonfly topology[J]. ACM SIGARCH Computer Architecture News, 2008, 36(3): 77- 88.

DOI

10
Agam S. Nvidia shipped 3.76 million data-center GPUs in 2023, according to study[EB/OL]. (2024-06-10) [2024-08- 06]. https://www.hpcwire.com/2024/06/10/nvidia-shipped-3-76-million-data-center-gpus-in-2023-according-to-study/.

11
Wang W Y, Ghobadi M, Shakeri K, et al. Rail-only: A low- cost high-performance network for training LLMs with tril-lion parameters[C]//Proceedings of IEEE Symposium on High-Performance Interconnects (HOTI). Albuquerque: IEEE, 2024.

12
Al-Fares M , Loukissas A , Vahdat A . A scalable, commodity data center network architecture[J]. ACM SIGCOMM Computer Communication Review, 2008, 38(4): 63- 74.

13
Cisco. Data center overlay technologies[R]. USA: Cisco, 2013.

14
Cisco. Cisco ACI multi-tier architecture white paper[R]. USA: Cisco, 2024.

15
Dong J B, Cao Z, Zhang T, et al. EFLOPS: Algorithm and system co-design for a high performance distributed train-ing platform[C]//Proceedings of IEEE International Sympo-sium on High Performance Computer Architecture (HPCA). San Diego: IEEE, 2020: 610-622.

16
Natalie E J , Tushar K , Li S , et al. On-chip networks[M]. Williston, USA: Morgan & Claypool, 2017.

17
张雅芝. 新型数据中心网络拓扑结构及性质的研究[D]. 济南: 齐鲁工业大学, 2024.

18
Zhu Y B, Eran H, Firestone D, et al. Congestion control for large-scale RDMA deployments[C]//Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication. New York: ACM, 2015: 523-536.

19
Mittal R, Lam V T, Dukkipati N, et al. TIMELY[C]//Proceedings of the 2015 ACM Conference on Special Inter-est Group on Data Communication. New York: ACM, 2015: 537-550.

20
Li Y L, Miao R, Liu H H, et al. HPCC[C]//Proceedings of the ACM Special Interest Group on Data Communication. New York: ACM, 2019: 44-58.

21
IEEE. 802.1Qbb. Priority-based flow control[EB/OL]. [2024-08-15]. https://1.ieee802.org/dcb/802-1qbb/.

22
Alizadeh M, Atikoglu B, Kabbani A, et al. Data center trans-port mechanisms: Congestion control theory and IEEE stan-dardization[C]//Proceedings of 46th Annual Allerton Confer-ence on Communication, Control, and Computing. Monti-cello: IEEE, 2008: 1270-1277.

23
Alizadeh M, Greenberg A, Maltz D A, et al. Data center TCP (DCTCP)[C]//Proceedings of the ACM SIGCOMM 2010 conference. New York: ACM, 2010.

24
Zhu Y B, Ghobadi M, Misra V, et al. ECN or delay[C]//Proceedings of the 12th International on Confer-ence on Emerging Networking Experiments and Technolo-gies. New York: ACM, 2016: 313-327.

25
Rhamdani F, Suwastika N A, Nugroho M A. Equal-cost multipath routing in data center network based on software defined network[C]//Proceedings of 6th International Conference on Information and Communication Technol-ogy (ICoICT). Bandung: IEEE, 2018: 222-226.

26
Alizadeh M, Edsall T, Dharmapurikar S, et al. CONGA[C]//Proceedings of the 2014 ACM conference on SIGCOMM. New York: ACM, 2014: 503-514.

27
Lu Y W, Chen G, Li B J, et al. Multi-path transport for RDMA in datacenters[C]//Proceedings of the 15th USENIX Conference on Networked Systems Design and Implementa-tion. New York: ACM, 2018: 357-371.

28
Song C H, Khooi X Z, Joshi R, et al. Network load balanc-ing with in-network reordering support for RDMA[C]//Proceedings of the ACM SIGCOMM 2023 Conference. New York: ACM, 2023: 816-831.

文章导航

/