特色专题

植物氮素信号途径研究进展及在作物育种中的应用

  • 白彦明 , 1, 2, 3 ,
  • 汪军成 1, 2 ,
  • 陈明 , 3, * ,
  • 王化俊 , 1, 2, * ,
  • 马有志 , 1, 2, 3, *
展开
  • 1. 省部共建干旱生境作物学国家重点实验室/甘肃省作物遗传改良与种质创新重点实验室, 兰州 730070
  • 2. 甘肃农业大学农学院, 兰州 730070
  • 3. 中国农业科学院作物科学研究所/作物基因资源与育种国家重点实验室, 北京 100081
王化俊(通信作者),教授,研究方向为作物遗传育种,电子信箱:
陈明(共同通信作者),研究员,研究方向为小麦抗逆分子育种,电子信箱:
马有志(共同通信作者),研究员,研究方向为小麦抗逆分子育种,电子信箱:

白彦明,博士研究生,研究方向为小麦氮高效相关调控途径,电子信箱:

收稿日期: 2024-12-23

  网络出版日期: 2025-06-25

基金资助

国家自然科学基金项目(32272099)

甘肃省联合科研基金一般项目(24JRRA840)

版权

版权所有,未经授权,不得转载。

Research progress in plant nitrogen signaling pathways and its application in crop breeding

  • Yanming BAI , 1, 2, 3 ,
  • Juncheng WANG 1, 2 ,
  • Ming CHEN , 3, * ,
  • Huajun WANG , 1, 2, * ,
  • Youzhi MA , 1, 2, 3, *
Expand
  • 1. State Key Laboratory of Aridland Crop Science/Gansu Provincial Key Laboratory of Crop Improvement & Germplasm Enhancement, Lanzhou 730070, China
  • 2. College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
  • 3. State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China

Received date: 2024-12-23

  Online published: 2025-06-25

Copyright

All rights reserved. Unauthorized reproduction is prohibited.

摘要

氮素对植物生长发育及提高产量和品质至关重要,但过度施用氮肥会造成资源浪费和环境污染,因此,深入理解植物氮素利用的遗传分子机制对改良作物氮素利用效率具有重要意义。系统总结了近几年植物氮素感知与转运途径、氮素同化途径及植物响应氮素信号的转录调控途径等方面的研究进展,以及作物氮高效相关基因的遗传定位和氮素调控途径研究结果在作物育种中的应用现状,这些研究将为培育高产、高效、绿色作物新品种奠定基础,促进作物生产可持续发展。同时探讨了未来在如何建立氮高效评价体系、完善氮素利用分子调控网络、协同调控植物氮高效、产量和品质等重要性状、挖掘作物种质资源中优异氮素利用关键基因资源,以及建立作物氮素高效分子育种技术体系研究方面亟待解决的问题。

本文引用格式

白彦明 , 汪军成 , 陈明 , 王化俊 , 马有志 . 植物氮素信号途径研究进展及在作物育种中的应用[J]. 科技导报, 2025 , 43(10) : 61 -75 . DOI: 10.3981/j.issn.1000-7857.2024.12.01815

1
Wang W , Li A F , Zhang Z H , et al. Posttranslational modifications: Regulation of nitrogen utilization and signaling[J]. Plant and Cell Physiology, 2021, 62 (4): 543- 552.

DOI

2
Sasaki A , Ashikari M , Ueguchi-Tanaka M , et al. Green revolution: A mutant gibberellin-synthesis gene in rice[J]. Nature, 2002, 416 (6882): 701- 702.

DOI

3
Peng J R , Richards D E , Hartley N M , et al. 'Green revolution' genes encode mutant gibberellin response modulators[J]. Nature, 1999, 400 (6741): 256- 261.

DOI

4
Wang F M , Yoshida H , Matsuoka M . Making the 'Green Revolution' truly green: Improving crop nitrogen use efficiency[J]. Plant and Cell Physiology, 2021, 62 (6): 942- 947.

DOI

5
Liu Q , Wu K , Song W Z , et al. Improving crop nitrogen use efficiency toward sustainable green revolution[J]. Annual Review of Plant Biology, 2022, 73: 523- 551.

DOI

6
Vidal E A , Alvarez J M , Araus V , et al. Nitrate in 2020: Thirty years from transport to signaling networks[J]. The Plant Cell, 2020, 32 (7): 2094- 2119.

DOI

7
Xu G H , Fan X R , Miller A J . Plant nitrogen assimilation and use efficiency[J]. Annual Review of Plant Biology, 2012, 63: 153- 182.

DOI

8
Shanks C M , Rothkegel K , Brooks M D , et al. Nitrogen sensing and regulatory networks: It's about time and space[J]. The Plant Cell, 2024, 36 (5): 1482- 1503.

DOI

9
Oldroyd G E D , Leyser O . A plant's diet, surviving in a variable nutrient environment[J]. Science, 2020, 368 (6486): eaba0196.

DOI

10
Li L , Liu K H , Sheen J . Dynamic nutrient signaling networks in plants[J]. Annual Review of Cell and Developmental Biology, 2021, 37: 341- 367.

DOI

11
Tsay Y F , Schroeder J I , Feldmann K A , et al. The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter[J]. Cell, 1993, 72 (5): 705- 713.

DOI

12
Léran S , Muños S , Brachet C , et al. Arabidopsis NRT1.1 is a bidirectional transporter involved in root-to-shoot nitrate translocation[J]. Molecular Plant, 2013, 6 (6): 1984- 1987.

DOI

13
Ho C H , Lin S H , Hu H C , et al. CHL1 functions as a nitrate sensor in plants[J]. Cell, 2009, 138 (6): 1184- 1194.

DOI

14
Liu K H , Tsay Y F . Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation[J]. The EMBO Journal, 2003, 22 (5): 1005- 1013.

DOI

15
Sun J , Zheng N . Molecular mechanism underlying the plant NRT1.1 dual-affinity nitrate transporter[J]. Frontiers in Physiology, 2015, 6: 386.

16
Sun J , Bankston J R , Payandeh J , et al. Crystal structure of the plant dual-affinity nitrate transporter NRT1.1[J]. Nature, 2014, 507 (7490): 73- 77.

DOI

17
Maghiaoui A , Bouguyon E , Cuesta C , et al. The Arabidopsis NRT1.1 transceptor coordinately controls auxin biosynthesis and transport to regulate root branching in response to nitrate[J]. Journal of Experimental Botany, 2020, 71 (15): 4480- 4494.

DOI

18
Su H , Wang T , Ju C F , et al. Abscisic acid signaling negatively regulates nitrate uptake via phosphorylation of NRT1.1 by SnRK2s in Arabidopsis[J]. Journal of Integrative Plant Biology, 2021, 63 (3): 597- 610.

DOI

19
Wang W , Hu B , Yuan D Y , et al. Expression of the nitrate transporter gene OsNRT1.1A/OsNPF6.3 confers high yield and early maturation in rice[J]. The Plant Cell, 2018, 30 (3): 638- 651.

DOI

20
Hu B , Wang W , Ou S J , et al. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies[J]. Nature Genetics, 2015, 47 (7): 834- 838.

DOI

21
Lin S H , Kuo H F , Canivenc G , et al. Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport[J]. The Plant Cell, 2008, 20 (9): 2514- 2528.

DOI

22
Wang Y Y , Tsay Y F . Arabidopsis nitrate transporter NRT1.9 is important in phloem nitrate transport[J]. The Plant Cell, 2011, 23 (5): 1945- 1957.

DOI

23
Cao H R , Liu Z , Guo J , et al. ZmNRT1.1B (ZmNPF6.6) determines nitrogen use efficiency via regulation of nitrate transport and signalling in maize[J]. Plant Biotechnology Journal, 2024, 22 (2): 316- 329.

DOI

24
Wen Z Y , Tyerman S D , Dechorgnat J , et al. Maize NPF6 proteins are homologs of Arabidopsis CHL1 that are selective for both nitrate and chloride[J]. The Plant Cell, 2017, 29 (10): 2581- 2596.

DOI

25
Wei Y M , Ren Z J , Wang B H , et al. A nitrate transporter encoded by ZmNPF7.9 is essential for maize seed development[J]. Plant Science, 2021, 308: 110901.

DOI

26
Kotur Z , MacKenzie N , Ramesh S , et al. Nitrate transport capacity of the Arabidopsis thaliana NRT2 family members and their interactions with AtNAR2.1[J]. New Phytologist, 2012, 194 (3): 724- 731.

DOI

27
Liu X Q , Huang D M , Tao J Y , et al. Identification and functional assay of the interaction motifs in the partner protein OsNAR2.1 of the two-component system for high-affinity nitrate transport[J]. New Phytologist, 2014, 204 (1): 74- 80.

DOI

28
Chopin F , Orsel M , Dorbe M F , et al. The Arabidopsis ATNRT2.7 nitrate transporter controls nitrate content in seeds[J]. The Plant Cell, 2007, 19 (5): 1590- 1602.

DOI

29
Chopin F , Wirth J , Dorbe M F , et al. The Arabidopsis nitrate transporter AtNRT2.1 is targeted to the root plasma membrane[J]. Plant Physiology and Biochemistry, 2007, 45 (8): 630- 635.

DOI

30
Wirth J , Chopin F , Santoni V , et al. Regulation of root nitrate uptake at the NRT2.1 protein level in Arabidopsis thaliana[J]. Journal of Biological Chemistry, 2007, 282 (32): 23541- 23552.

DOI

31
Cerezo M , Tillard P , Filleur S , et al. Major alterations of the regulation of root NO3- uptake are associated with the mutation of Nrt2.1 and Nrt2.2 genes in Arabidopsis[J]. Plant Physiology, 2001, 127 (1): 262- 271.

DOI

32
Filleur S , Dorbe M F , Cerezo M , et al. An Arabidopsis T-DNA mutant affected in Nrt2 genes is impaired in nitrate uptake[J]. FEBS Letters, 2001, 489 (2/3): 220- 224.

33
Li W B , Wang Y , Okamoto M , et al. Dissection of the AtNRT2.1: AtNRT2.2 inducible high-affinity nitrate transporter gene cluster[J]. Plant Physiology, 2007, 143 (1): 425- 433.

DOI

34
Chen J G , Zhang Y , Tan Y W , et al. Agronomic nitrogen-use efficiency of rice can be increased by driving OsNRT2.1 expression with the OsNAR2.1 promoter[J]. Plant Biotechnology Journal, 2016, 14 (8): 1705- 1715.

DOI

35
Lupini A , Mercati F , Araniti F , et al. NAR2.1/NRT2.1 functional interaction with NO3- and H+ fluxes in high-affinity nitrate transport in maize root regions[J]. Plant Physiology and Biochemistry, 2016, 102: 107- 114.

DOI

36
Fan X R , Tang Z , Tan Y W , et al. Overexpression of a pH-sensitive nitrate transporter in rice increases crop yields[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113 (26): 7118- 7123.

37
Kiba T , Feria-Bourrellier A B , Lafouge F , et al. The Arabidopsis nitrate transporter NRT2.4 plays a double role in roots and shoots of nitrogen-starved plants[J]. The Plant Cell, 2012, 24 (1): 245- 258.

DOI

38
Lezhneva L , Kiba T , Feria-Bourrellier A B , et al. The Arabidopsis nitrate transporter NRT2.5 plays a role in nitrate acquisition and remobilization in nitrogen-starved plants[J]. The Plant Journal, 2014, 80 (2): 230- 241.

DOI

39
Li W J , He X , Chen Y , et al. A wheat transcription factor positively sets seed vigour by regulating the grain nitrate signal[J]. New Phytologist, 2020, 225 (4): 1667- 1680.

DOI

40
O'Brien J A , Vega A , Bouguyon E , et al. Nitrate transport, sensing, and responses in plants[J]. Molecular Plant, 2016, 9 (6): 837- 856.

DOI

41
Liu K H , Diener A , Lin Z W , et al. Primary nitrate responses mediated by calcium signalling and diverse protein phosphorylation[J]. Journal of Experimental Botany, 2020, 71 (15): 4428- 4441.

DOI

42
Araus V , Vidal E A , Puelma T , et al. Members of BTB gene family of scaffold proteins suppress nitrate uptake and nitrogen use efficiency[J]. Plant Physiology, 2016, 171 (2): 1523- 1532.

43
Chen Z C , Ma J F . Improving nitrogen use efficiency in rice through enhancing root nitrate uptake mediated by a nitrate transporter, NRT1.1B[J]. Journal of Genetics and Genomics, 2015, 42 (9): 463- 465.

DOI

44
Fan X R , Feng H M , Tan Y W , et al. A putative 6-transmembrane nitrate transporter OsNRT1.1b plays a key role in rice under low nitrogen[J]. Journal of Integrative Plant Biology, 2016, 58 (6): 590- 599.

DOI

45
Duan D D , Zhang H M . A single SNP in NRT1.1B has a major impact on nitrogen use efficiency in rice[J]. Science China Life Sciences, 2015, 58 (8): 827- 828.

DOI

46
Hu B , Jiang Z M , Wang W , et al. Nitrate–NRT1.1B–SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants[J]. Nature Plants, 2019, 5 (4): 401- 413.

DOI

47
Zhang J Y , Liu Y X , Zhang N , et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice[J]. Nature Biotechnology, 2019, 37 (6): 676- 684.

DOI

48
Tang W J , Ye J , Yao X M , et al. Genome-wide associated study identifies NAC42-activated nitrate transporter conferring high nitrogen use efficiency in rice[J]. Nature Communications, 2019, 10 (1): 5279.

DOI

49
Uauy C , Distelfeld A , Fahima T , et al. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat[J]. Science, 2006, 314 (5803): 1298- 1301.

DOI

50
Lou H Y , Zhang R Q , Liu Y T , et al. Genome-wide association study of six quality-related traits in common wheat (Triticum aestivum L.) under two sowing conditions[J]. Theoretical and Applied Genetics, 2021, 134 (1): 399- 418.

DOI

51
Meng X H , Lou H Y , Zhai S S , et al. TaNAM-6A is essential for nitrogen remobilisation and regulates grain protein content in wheat (Triticum aestivum L.)[J]. Plant, Cell & Environment, 2024, 47 (6): 2310- 2321.

52
Meng X C , Yu X M , Wu Y F , et al. Chromatin remodeling protein ZmCHB101 regulates nitrate-responsive gene expression in maize[J]. Frontiers in Plant Science, 2020, 11: 52.

DOI

53
Beier M P , Obara M , Taniai A , et al. Lack of ACTPK1, an STY kinase, enhances ammonium uptake and use, and promotes growth of rice seedlings under sufficient external ammonium[J]. The Plant Journal, 2018, 93 (6): 992- 1006.

DOI

54
Kaiser B N . Functional analysis of an Arabidopsis T-DNA "knockout" of the high-affinity NH4+ transporter AtAMT1;1[J]. Plant Physiology, 130 (3): 1263- 1275.

DOI

55
Yuan L X , Loqué D , Kojima S , et al. The organization of high-affinity ammonium uptake in Arabidopsis roots depends on the spatial arrangement and biochemical properties of AMT1-type transporters[J]. The Plant Cell, 2007, 19 (8): 2636- 2652.

DOI

56
Loqué D , Yuan L X , Kojima S , et al. Additive contribution of AMT1;1 and AMT1;3 to high-affinity ammonium uptake across the plasma membrane of nitrogen-deficient Arabidopsis roots[J]. The Plant Journal, 2006, 48 (4): 522- 534.

DOI

57
Yuan L X , Graff L , Loqué D , et al. AtAMT1;4, a pollen-specific high-affinity ammonium transporter of the plasma membrane in Arabidopsis[J]. Plant and Cell Physiology, 2009, 50 (1): 13- 25.

DOI

58
Giehl R F H , Laginha A M , Duan F Y , et al. A critical role of AMT2;1 in root-to-shoot translocation of ammonium in Arabidopsis[J]. Molecular Plant, 2017, 10 (11): 1449- 1460.

DOI

59
Li S , Tian Y H , Wu K , et al. Modulating plant growth–metabolism coordination for sustainable agriculture[J]. Nature, 2018, 560 (7720): 595- 600.

DOI

60
Ranathunge K , El-kereamy A , Gidda S , et al. AMT1; 1 transgenic rice plants with enhanced NH4+ permeability show superior growth and higher yield under optimal and subopti-mal NH4+ conditions[J]. Journal of Experimental Botany, 2014, 65 (4): 965- 979.

DOI

61
Hoque M S , Masle J , Udvardi M K , et al. Over-expression of the rice OsAMT1-1 gene increases ammonium uptake and content, but impairs growth and development of plants under high ammonium nutrition[J]. Functional Plant Biology, 2006, 33 (2): 153- 163.

DOI

62
Li C , Tang Z , Wei J , et al. The OsAMT1.1 gene functions in ammonium uptake and ammonium–potassium homeostasis over low and high ammonium concentration ranges[J]. Journal of Genetics and Genomics, 2016, 43 (11): 639- 649.

DOI

63
Sonoda Y , Ikeda A , Saiki S , et al. Distinct expression and function of three ammonium transporter genes (OsAMT1;11;3) in rice[J]. Plant and Cell Physiology, 2003, 44 (7): 726- 734.

DOI

64
Sonoda Y , Ikeda A , Saiki S , et al. Feedback regulation of the ammonium transporter gene family AMT1 by glutamine in rice[J]. Plant and Cell Physiology, 2003, 44 (12): 1396- 1402.

DOI

65
Xuan Y H , Priatama R A , Huang J , et al. Indeterminate domain 10 regulates ammonium-mediated gene expression in rice roots[J]. New Phytologist, 2013, 197 (3): 791- 804.

DOI

66
Suenaga A , Moriya K , Sonoda Y , et al. Constitutive expression of a novel-type ammonium transporter OsAMT2 in rice plants[J]. Plant and Cell Physiology, 2003, 44 (2): 206- 211.

DOI

67
Mach J . The real yield deal? nitrate transporter expression boosts yield and accelerates maturation[J]. The Plant Cell, 2018, 30 (3): 520- 521.

DOI

68
Tilman D , Cassman K G , Matson P A , et al. Agricultural sustainability and intensive production practices[J]. Nature, 2002, 418 (6898): 671- 677.

DOI

69
Gu R L , Duan F Y , An X , et al. Characterization of AMT-mediated high-affinity ammonium uptake in roots of maize (Zea mays L.)[J]. Plant and Cell Physiology, 2013, 54 (9): 1515- 1524.

DOI

70
Hui J , An X , Li Z B , et al. The mycorrhiza-specific ammonium transporter ZmAMT3;1 mediates mycorrhiza-dependent nitrogen uptake in maize roots[J]. The Plant Cell, 2022, 34 (10): 4066- 4087.

DOI

71
Liu X J , Hu B , Chu C C . Nitrogen assimilation in plants: Current status and future prospects[J]. Journal of Genetics and Genomics, 2022, 49 (5): 394- 404.

DOI

72
Maathuis F J M , Diatloff E . Roles and functions of plant mineral nutrients[J]. Methods in Molecular Biology, 2013, 953: 1- 21.

73
Zhang Z H , Chu C C . Nitrogen-use divergence between indica and Japonica rice: Variation at nitrate assimilation[J]. Molecular Plant, 2020, 13 (1): 6- 7.

DOI

74
Gao Z Y , Wang Y F , Chen G , et al. The indica nitrate reductase gene OsNR2 allele enhances rice yield potential and nitrogen use efficiency[J]. Nature Communications, 2019, 10: 5207.

DOI

75
Hu M Y , Zhao X Q , Liu Q , et al. Transgenic expression of plastidic glutamine synthetase increases nitrogen uptake and yield in wheat[J]. Plant Biotechnology Journal, 2018, 16 (11): 1858- 1867.

DOI

76
Jing Y F , Shen C C , Li W J , et al. TaLBD41 interacts with TaNAC2 to regulate nitrogen uptake and metabolism in response to nitrate availability[J]. New Phytologist, 2024, 242 (2): 641- 657.

DOI

77
Huang Y C , Wang H H , Zhu Y D , et al. THP9 enhances seed protein content and nitrogen-use efficiency in maize[J]. Nature, 2022, 612 (7939): 292- 300.

DOI

78
Prinsi B , Espen L . Mineral nitrogen sources differently affect root glutamine synthetase isoforms and amino acid balance among organs in maize[J]. BMC Plant Biology, 2015, 15 (1): 96.

DOI

79
Martin A , Lee J , Kichey T , et al. Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production[J]. The Plant Cell, 2006, 18 (11): 3252- 3274.

DOI

80
Shi X L , Cui F , Han X Y , et al. Comparative genomic and transcriptomic analyses uncover the molecular basis of high nitrogen-use efficiency in the wheat cultivar Kenong 9204[J]. Molecular Plant, 2022, 15 (9): 1440- 1456.

DOI

81
Zhang H , Jin Z Y , Cui F , et al. Epigenetic modifications regulate cultivar-specific root development and metabolic adaptation to nitrogen availability in wheat[J]. Nature Communications, 2023, 14 (1): 8238.

DOI

82
Liu K H , Liu M H , Lin Z W , et al. NIN-like protein 7 transcription factor is a plant nitrate sensor[J]. Science, 2022, 377 (6613): 1419- 1425.

DOI

83
Liu K H , Niu Y J , Konishi M , et al. Discovery of nitrate–CPK–NLP signalling in central nutrient–growth networks[J]. Nature, 2017, 545 (7654): 311- 316.

DOI

84
Armijo G , Gutiérrez R A . Emerging players in the nitrate signaling pathway[J]. Molecular Plant, 2017, 10 (8): 1019- 1022.

DOI

85
Krouk G . Nitrate signalling: Calcium bridges the nitrate gap[J]. Nature Plants, 2017, 3 (7): 17095.

DOI

86
Yu J , Xuan W , Tian Y L , et al. Enhanced OsNLP4-OsNiR cascade confers nitrogen use efficiency by promoting tiller number in rice[J]. Plant Biotechnology Journal, 2021, 19 (1): 167- 176.

DOI

87
Alfatih A , Wu J , Zhang Z S , et al. Rice NIN-LIKE PROTEIN 1 rapidly responds to nitrogen deficiency and improves yield and nitrogen use efficiency[J]. Journal of Experimental Botany, 2020, 71 (19): 6032- 6042.

DOI

88
Wu J , Zhang Z S , Xia J Q , et al. Rice NIN-LIKE PROTEIN 4 plays a pivotal role in nitrogen use efficiency[J]. Plant Biotechnology Journal, 2021, 19 (3): 448- 461.

DOI

89
Gao Y H , Xu Z P , Zhang L J , et al. MYB61 is regulated by GRF4 and promotes nitrogen utilization and biomass production in rice[J]. Nature Communications, 2020, 11 (1): 5219.

DOI

90
Wu K , Wang S S , Song W Z , et al. Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice[J]. Science, 2020, 367 (6478): eaaz2046.

DOI

91
Wei S B , Li X , Lu Z F , et al. A transcriptional regulator that boosts grain yields and shortens the growth duration of rice[J]. Science, 2022, 377 (6604): eabi8455.

DOI

92
Liu Y Q , Wang H R , Jiang Z M , et al. Genomic basis of geographical adaptation to soil nitrogen in rice[J]. Nature, 2021, 590 (7847): 600- 605.

DOI

93
Wang Q , Su Q M , Nian J Q , et al. The Ghd7 transcription factor represses ARE1 expression to enhance nitrogen utilization and grain yield in rice[J]. Molecular Plant, 2021, 14 (6): 1012- 1023.

DOI

94
Wang Q , Nian J Q , Xie X Z , et al. Genetic variations in ARE1 mediate grain yield by modulating nitrogen utilization in rice[J]. Nature Communications, 2018, 9 (1): 735.

DOI

95
He X , Qu B , Li W , et al. The nitrate-inducible NAC transcription factor TaNAC2-5A controls nitrate response and increases wheat yield[J]. Plant Physiology, 2015, 169 (3): 1991- 2005.

96
Chen X B , Yao Q F , Gao X H , et al. Shoot-to-root mobile transcription factor HY5 coordinates plant carbon and nitrogen acquisition[J]. Current Biology, 2016, 26 (5): 640- 646.

DOI

97
Huang L F , Zhang H C , Zhang H Y , et al. HY5 regulates nitrite reductase 1 (NIR1) and ammonium transporter1;2 (AMT1;2) in Arabidopsis seedlings[J]. Plant Science, 2015, 238: 330- 339.

DOI

98
Obertello M , Krouk G , Katari M S , et al. Modeling the global effect of the basic-leucine zipper transcription factor 1 (bZIP1) on nitrogen and light regulation in Arabidopsis[J]. BMC Systems Biology, 2010, 4 (1): 111.

DOI

99
Wang H X , Ma Q Y , Shan F H , et al. Transcriptional regulation mechanism of wheat varieties with different nitrogen use efficiencies in response to nitrogen deficiency stress[J]. BMC Genomics, 2022, 23 (1): 727.

DOI

100
Zhang S Y , Zhu L M , Shen C B , et al. Natural allelic variation in a modulator of auxin homeostasis improves grain yield and nitrogen use efficiency in rice[J]. The Plant Cell, 2021, 33 (3): 566- 580.

DOI

101
Wu W , Dong X O , Chen G M , et al. The elite haplotype OsGATA8-H coordinates nitrogen uptake and productive tiller formation in rice[J]. Nature Genetics, 2024, 56 (7): 1516- 1526.

DOI

102
Yang X H , Nong B X , Chen C , et al. OsNPF3.1, a member of the NRT1/PTR family, increases nitrogen use efficiency and biomass production in rice[J]. The Crop Journal, 2023, 11 (1): 108- 118.

DOI

103
Sun H Y , Qian Q , Wu K , et al. Heterotrimeric G proteins regulate nitrogen-use efficiency in rice[J]. Nature Genetics, 2014, 46 (6): 652- 656.

DOI

104
Bai J J , Piao Z Z , Wan C Z , et al. SLAF-based linkage map construction and QTL mapping of nitrogen use efficiency in rice (Oryza sativa L.)[J]. Plant Molecular Biology Reporter, 2021, 39 (4): 727- 738.

DOI

105
Shi H W , Wang W C , Gao L F , et al. Genome-wide association study of seedling nitrogen-use efficiency-associated traits in common wheat (Triticum aestivum L.)[J]. The Crop Journal, 2024, 12 (1): 222- 231.

DOI

106
Shi H W , Chen M , Gao L F , et al. Genome-wide association study of agronomic traits related to nitrogen use efficiency in wheat[J]. Theoretical and Applied Genetics, 2022, 135 (12): 4289- 4302.

DOI

107
Zhang Z , Peng C , Xu W , et al. Genome-wide association study of agronomic traits related to nitrogen use efficiency in Henan wheat[J]. BMC Genomics, 2024, 25 (1): 7.

DOI

108
Xu J , Shang L G , Wang J J , et al. The SEEDLING BIOMASS 1 allele from indica rice enhances yield performance under low-nitrogen environments[J]. Plant Biotechnology Journal, 2021, 19 (9): 1681- 1683.

DOI

109
Wang R F , Zhong Y T , Han J N , et al. NIN-LIKE PROTEIN3.2 inhibits repressor Aux/IAA14 expression and enhances root biomass in maize seedlings under low nitrogen[J]. The Plant Cell, 2024, 36 (10): 4388- 4403.

DOI

110
Song L , Liu J , Cao B L , et al. Reducing brassinosteroid signalling enhances grain yield in semi-dwarf wheat[J]. Nature, 2023, 617 (7959): 118- 124.

DOI

111
Yang G J , Liu J G , Zhao C J , et al. Unmanned aerial vehicle remote sensing for field-based crop phenotyping: Current status and perspectives[J]. Frontiers in Plant Science, 2017, 8: 1111.

DOI

112
Karunarathne S D , Han Y , Zhang X Q , et al. CRISPR/Cas9 gene editing and natural variation analysis demonstrate the potential for HvARE1 in improvement of nitrogen use efficiency in barley[J]. Journal of Integrative Plant Biology, 2022, 64 (3): 756- 770.

DOI

文章导航

/