刘瑞,硕士研究生,研究方向为计算机网络技术,电子信箱:535426192@qq.com |
收稿日期: 2024-05-27
网络出版日期: 2025-06-25
基金资助
内蒙古自治区科技计划项目(2021GG0250)
内蒙古自治区自然科学基金(2021MS06029)
内蒙古自治区科技计划项目(2020GG0104)
版权
Research progress of intrusion detection methods in SDN
Received date: 2024-05-27
Online published: 2025-06-25
Copyright
刘瑞 , 王海凤 , 郑承蔚 , 武文红 , 牛恒茂 . SDN中入侵检测方法研究进展[J]. 科技导报, 2025 , 43(10) : 76 -93 . DOI: 10.3981/j.issn.1000-7857.2024.05.00570
1 |
|
2 |
Software defined networking market size, share and global market forecast to 2025[EB/OL]. (2021-02-14)[2024-01-04]. https://www.marketsandmarkets.com/.
|
3 |
|
4 |
Aburomman A A, Bin Ibne Reaz M. Survey of learning methods in intrusion detection systems[C]//Proceedings of International Conference on Advances in Electrical, Electronic and Systems Engineering (ICAEES). Piscataway, NJ: IEEE, 2016: 362-365.
|
5 |
陈晓帆, 黎志勇, 李宁. 基于软件定义网络的恶意网站防护系统[J]. 科技导报, 2015, 33 (5): 93- 99.
|
6 |
翟亚红, 崔峻玮. 软件定义网络安全研究进展[J]. 科技导报, 2023, 41 (13): 76- 88.
|
7 |
|
8 |
|
9 |
|
10 |
|
11 |
|
12 |
|
13 |
|
14 |
Abdulkarem H S, Dawod A. DDoS attack detection and mitigation at SDN data plane layer[C]//Proceedings of 2nd Global Power, Energy and Communication Conference (GPECOM). Piscataway, NJ: IEEE, 2020: 322-326.
|
15 |
李道全, 杨乾乾, 鲁晓夫. 基于决策树的SDN网络入侵分类检测模型[J]. 计算机工程与设计, 2022, 43 (8): 2146- 2152.
|
16 |
|
17 |
|
18 |
|
19 |
|
20 |
|
21 |
|
22 |
|
23 |
Sudar K M, Beulah M, Deepalakshmi P, et al. Detection of Distributed Denial of Service Attacks in SDN using Machine learning techniques[C]// Proceedings of International Conference on Computer Communication and Informatics (ICCCI). Piscataway, NJ: IEEE, 2021: 1-5.
|
24 |
Vetriselvi V, Shruti P S, Abraham S. Two-level intrusion detection system in SDN using machine learning[M]// Lecture Notes in Electrical Engineering. Singapore: Springer Singapore, 2018: 449-461.
|
25 |
胡睿, 徐芹宝, 王昌达. SDN中一种基于机器学习的DDoS入侵检测与防御方法[J]. 计算机与数字工程, 2023, 51 (7): 1590- 1596.
|
26 |
|
27 |
|
28 |
|
29 |
|
30 |
|
31 |
|
32 |
|
33 |
|
34 |
|
35 |
Lee S. AE-NIDS: Automated evolving SDN-based network intrusion detection system[EB/OL]. [2023-02-02]. https://2020.eurosys.org/wp-content/uploads/2020/04/eurosys20posters-final35-abstract.pdf.
|
36 |
|
37 |
|
38 |
|
39 |
吕星璇, 韩俐. SDN环境下基于PCA-DNN的扫描攻击检测模型研究[J]. 天津理工大学学报, 2022, 38 (1): 43- 48.
|
40 |
|
41 |
Chen J, Cui M. Multi-class intrusion detection system in SDN based on hybrid LSTM model[M]// Communications in Computer and Information Science. Singapore: Springer Nature Singapore, 2024: 99-111.
|
42 |
|
43 |
|
44 |
|
45 |
|
46 |
Goud K S, Rao G S. Towards an efficient DDoS attack detection in SDN: An approach with CNN-GRU fusion[C]// Proceedings of Fourth International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT). Piscataway, NJ: IEEE, 2024: 1-10.
|
47 |
Lee T H, Chang L H, Syu C W. Deep learning enabled intrusion detection and prevention system over SDN networks [C]//Proceedings of IEEE International Conference on Communications Workshops (ICC Workshops). Piscataway, NJ: IEEE, 2020: 1-6.
|
48 |
|
49 |
Zhang Y L, Wu X M, Dong H M. TIBS: A deep-learning model for network intrusion detection for SDN environ-ments[C]//Proceedings of 9th International Conference on Computer and Communication Systems (ICCCS). Piscataway, NJ: IEEE, 2024: 419-426.
|
50 |
|
51 |
Nguyen H H, Nguyen T G, Hoang D T, et al. CARS: Dynamic cyber-attack reaction in SDN-based networks with Q-learning[C]//Proceedings of International Conference on Advanced Technologies for Communications (ATC). Piscataway, NJ: IEEE, 2021: 156-161.
|
52 |
|
53 |
|
54 |
|
55 |
|
56 |
Schulman J, Wolski F, Dhariwal P, et al. Proximal policy optimization algorithms[EB/OL]. [2024-01-05]. https://arxiv.org/abs/1707.06347v2.
|
57 |
Shen J H, Zhang T, Zhang B C, et al. PPO-RM: Proximal policy optimization based route mutation for multimedia services[C]//Proceedings of International Wireless Commu-nications and Mobile Computing (IWCMC). Piscataway, NJ: IEEE, 2021: 35-40.
|
58 |
Zolotukhin M, Kumar S, Hämäläinen T. Reinforcement learning for attack mitigation in SDN-enabled networks [C]//Proceedings of 6th IEEE Conference on Network Soft-warization (NetSoft). Piscataway, NJ: IEEE, 2020: 282-286.
|
59 |
|
60 |
Allakany A, Yadav G, Paul K, et al. Detection and mitigation of LFA attack in SDN-iot network[C]//Web, artificial intelligence and network applications: Proceedings of the workshops of the 34th international conference on advanced information networking and applications(WAINA-2020). Cham: Springer International Publishing, 2020: 1087-1096.
|
61 |
|
62 |
Sampaio L S R, Faustini P H A, Silva A S, et al. Using NFV and reinforcement learning for anomalies detection and miti-gation in SDN[C]//Proceedings of IEEE Symposium on Computers and Communications (ISCC). Piscataway, NJ: IEEE, 2018: 432-437.
|
63 |
|
64 |
|
65 |
|
66 |
|
67 |
Dey S K, Uddin M R, Rahman M M. Performance analysis of SDN-based intrusion detection model with feature selection approach[M]//Uddin M S, Bansal J C, eds. Algorithms for Intelligent Systems. Singapore: Springer Nature Singapore, 2019: 483-494.
|
68 |
Yadav A, Kori A S, G N D, et al. A hybrid approach for detection of DDoS attacks using entropy and machine learning in software defined networks[C]//Proceedings of 12th International Conference on Computing Communication and Networking Technologies (ICCCNT). Piscataway, NJ: IEEE, 2021: 1-7.
|
69 |
Mohammad H M, Abdullah A A. DDoS attack mitigation using entropy in SDN-IoT environment[C]//Proceedings of AIP Conference Proceedings", "AL-Kadhum 2ND International Conference on Modern Applications of Information and Communication Technology. Baghdad: AIP Publishing, 2023: 56-67.
|
70 |
|
71 |
|
72 |
|
73 |
|
74 |
|
75 |
|
76 |
|
77 |
Ladigatti A, Merawade V, Jain S, et al. Mitigation of DDoS attacks in SDN using access control list, entropy and puzzle-based mechanisms[C]//Proceedings of International Conference on Applied Intelligence and Sustainable Computing (ICAISC). Piscataway, NJ: IEEE, 2023: 1-8.
|
78 |
|
79 |
|
80 |
|
81 |
|
82 |
肖建平, 龙春, 赵静, 等. 基于深度学习的网络入侵检测研究综述[J]. 数据与计算发展前沿, 2021, 3 (3): 59- 74.
|
83 |
|
84 |
|
85 |
Santos da Silva A, Wickboldt J A, Granville L Z, et al. ATLANTIC: A framework for anomaly traffic detection, classification, and mitigation in SDN[C]//Proceedings of NOMS 2016-2016 IEEE/IFIP Network Operations and Management Symposium. Piscataway, NJ: IEEE, 2016: 27-35.
|
86 |
|
87 |
|
88 |
|
89 |
|
90 |
|
91 |
|
92 |
|
/
〈 |
|
〉 |