研究论文

调水调沙工程对黄河口海域叶绿素的影响—基于GOCI遥感影像

  • 张龙 , 1, 2, 3 ,
  • 马深 , 2, 3, 4, *
展开
  • 1. 中国海洋大学海洋地球科学学院, 青岛 266100
  • 2. 交通运输部天津水运工程科学研究所, 天津 300456
  • 3. 天津水运工程研究院有限公司, 天津 300456
  • 4. 天津市水运工程测绘技术重点实验室, 天津 300456
马深(通信作者),高级工程师,研究方向为海洋勘察,电子信箱:

张龙,高级工程师,研究方向为海洋勘察,电子信箱:

收稿日期: 2024-11-27

  网络出版日期: 2025-06-25

基金资助

国家自然科学基金项目(41525021)

国家重点研发计划(2023YFB3907200)

中央级公益性科研院所基本科研业务费专项资金项目(TKS20220104)

中央级公益性科研院所基本科研业务费专项资金项目(TKS20220303)

版权

版权所有,未经授权,不得转载。

Impact of water sediment regulation event to sea surface chlorophyll a concentration in the Yellow River Estuary: Based on GOCI remote sensing data

  • Long ZHANG , 1, 2, 3 ,
  • Shen MA , 2, 3, 4, *
Expand
  • 1. School of Marine Earth Sciences, Ocean University of China, Qingdao 266100, China
  • 2. Tianjin Research Institute for Water Transport Engineering, Ministry of Transport of the People's Republic of China, Tianjin 300456, China
  • 3. Tianjin Research Institute for Water Transport Engineering Co., Ltd, Tianjin 300456, China
  • 4. Tianjin Key Laboratory of Surveying and Mapping for Water Transport Engineering, Tianjin 300456, China

Received date: 2024-11-27

  Online published: 2025-06-25

Copyright

All rights reserved. Unauthorized reproduction is prohibited.

摘要

基于静止轨道海洋彩色成像仪(GOCI)卫星遥感数据对黄河口及其毗邻海域表层水体叶绿素a(Chl-a)浓度进行反演,并根据2019年的实测黄河口表层水体Chl-a浓度对GOCI数据进行了验证,结果表明,反演得到的Chl-a浓度准确。同时,通过对比分析调水调沙年份和未调水调沙年份的黄河口及其毗邻海域表层水体Chl-a浓度的时空变化特征后发现:(1)在调水调沙年份,从调水调沙前到调水期结束Chl-a浓度呈持续降低的状态;从调沙期开始,由于短时间内携带大量营养物质的泥沙大量汇入研究海域,导致该海域内Chl-a浓度大幅增加;(2)Chl-a在调水调沙年份的平均浓度整体低于未调水调沙年份的平均浓度,从侧面表明调水调沙使得大量泥沙入海导致水体浊度增加,降低了光合作用效率,这在一定程度上抑制了浮游生物的爆发,进而防止了赤潮等生态问题的发生。研究结果表明,实施调水调沙工程在缓解黄河口上游水库及河床泥沙淤积的同时,并未对黄河口湿地及其毗邻海域的生态环境产生破坏;构建的监测模型对未来评估及动态监测调水调沙工程对黄河口湿地及其毗邻海域生态环境影响具有重要意义。

本文引用格式

张龙 , 马深 . 调水调沙工程对黄河口海域叶绿素的影响—基于GOCI遥感影像[J]. 科技导报, 2025 , 43(10) : 94 -103 . DOI: 10.3981/j.issn.1000-7857.2024.11.01575

1
Longhurst A , Sathyendranath S , Platt T , et al. An estimate of global primary production in the ocean from satellite radiometer data[J]. Journal of Plankton Research, 1995, 17 (6): 1245- 1271.

DOI

2
孙慧慧. 黄河口邻近海域浮游植物群落结构时空变化及其对调水调沙的响应[D]. 烟台: 中国科学院烟台海岸带研究所, 2017.

3
Syvitski J P M , Milliman J D . Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean[J]. The Journal of Geology, 2007, 115 (1): 1- 19.

DOI

4
Wang H J , Yang Z S , Saito Y , et al. Interannual and seasonal variation of the Huanghe (Yellow River) water discharge over the past 50 years: Connections to impacts from ENSO events and dams[J]. Global and Planetary Change, 2006, 50 (3/4): 212- 225.

5
Wang S J , Hassan M A , Xie X P . Relationship between suspended sediment load, channel geometry and land area increment in the Yellow River Delta[J]. Catena, 2006, 65 (3): 302- 314.

DOI

6
Syvitski J P M , Vorosmarty C J , Kettner A J , et al. Impact of humans on the flux of terrestrial sediment to the global coastal ocean[J]. Science, 2005, 308 (5720): 376- 380.

DOI

7
Yang Z S , Milliman J D , Galler J , et al. Yellow River's water and sediment discharge decreasing steadily[J]. Eos, Transactions American Geophysical Union, 1998, 79 (48): 589- 592.

8
中国河流泥沙公报[M]. 北京: 中国水利水电出版社, 2011.

9
Milliman J D , Meade R H . World-wide delivery of river sediment to the oceans[J]. The Journal of Geology, 1983, 91 (1): 1- 21.

DOI

10
Bi N S , Yang Z S , Wang H J , et al. Impact of artificial water and sediment discharge regulation in the Huanghe (Yellow River) on the transport of particulate heavy metals to the sea[J]. Catena, 2014, 121: 232- 240.

DOI

11
Bacher C , Grant J , Hawkins A J S , et al. Modelling the effect of food depletion on scallop growth in Sungo Bay (China)[J]. Aquatic Living Resources, 2003, 16 (1): 10- 24.

DOI

12
赵梦莹. 基于GOCI传感器的渤海、北黄海水色要素反演研究[D]. 大连: 大连海洋大学, 2016.

13
Hu C H , Ji Z W , Wang T , et al. Dynamic characteristics of sea currents and sediment dispersion in the Yellow River Estuary[J]. International Journal of Sediment Research, 1998, 13 (2): 16- 26.

14
吴立新, 赵敏, 李建文, 等. 2002—2014年黄河口调水调沙特征分析[J]. 山东林业科技, 2015, 45 (6): 23- 25.

DOI

15
李广雪, 岳淑红, 赵东波, 等. 黄河口快速沉积及其动力过程[J]. 海洋地质与第四纪地质, 2004, 24 (3): 29- 36.

16
Ruddick K G , Ovidio F , Rijkeboer M . Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters[J]. Applied Optics, 2000, 39 (6): 897- 912.

DOI

17
贾越平. 基于GOCI数据的北黄海叶绿素浓度反演模型研究[D]. 大连: 大连海洋大学, 2019.

18
卜栩楠. 黄河口海域悬浮物浓度遥感反演算法及时空分布特征研究[D]. 呼和浩特: 内蒙古大学, 2018.

19
O'Reilly J E , Maritorena S , Mitchell B G , et al. Ocean color chlorophyll algorithms for SeaWiFS[J]. Journal of Geophysical Research: Oceans, 1998, 103 (C11): 24937- 24953.

DOI

20
李正浩, 陈志钊, 王力彦, 等. 结合GOCI数据反演近海浮游植物叶绿素和类胡萝卜素浓度[J]. 光学学报, 2021, 41 (2): 7- 17.

21
Lorenzen C J . Determination of chlorophyll and pheo-pig-ments: Spectrophotometric equations1[J]. Limnology and Oceanography, 1967, 12 (2): 343- 346.

DOI

22
Li X Y , Chen H T , Jiang X Y , et al. Impacts of human activities on nutrient transport in the Yellow River: The role of the Water-Sediment Regulation Scheme[J]. Science of the Total Environment, 2017, 592 (AUG.15): 161- 170.

23
Ran X B , Yu Z G , Chen H T , et al. Silicon and sediment transport of the Changjiang River (Yangtze River): Could the Three Gorges Reservoir be a filter?[J]. Environmental Earth Sciences, 2013, 70 (4): 1881- 1893.

DOI

24
Bednarek A , Szklarek S , Zalewski M . Nitrogen pollution removal from areas of intensive farming: Comparison of various denitrification biotechnologies[J]. Ecohydrology & Hydrobiology, 2014, 14 (2): 132- 141.

25
Kong D X , Miao C Y , Wu J W , et al. The hydro-environ-mental response on the lower Yellow River to the water-sediment regulation scheme[J]. Ecological Engineering, 2015, 79: 69- 79.

DOI

26
Kong D X , Miao C Y , Wu J W , et al. Bi-objective analysis of water-sediment regulation for channel scouring and delta maintenance: A study of the lower Yellow River[J]. Global and Planetary Change, 2015, 133: 27- 34.

DOI

27
Guo C C , Wang G , Yu G , et al. Study on adsorption of phosphorus in eutrophied water body by natural sediment[J]. China Water & Waste Water, 2006, 22 (9): 10- 13.

28
Sonzogni W C , Chapra S C , Armstrong D E , et al. Bioavail-ability of phosphorus inputs to lakes[J]. Journal of Environmental Quality, 1982, 11 (4): 555- 563.

29
孙珊, 苏博, 李凡, 等. 调水调沙对黄河口及邻近海域环境状况的影响[J]. 海洋环境科学, 2019, 38 (3): 399- 406.

30
王柯萌. 调水调沙影响下的黄河入海水沙输运机制[D]. 青岛: 自然资源部第一海洋研究所, 2019.

文章导航

/