特色专题

市政污泥与餐厨垃圾厌氧沼渣协同热解炭化技术研究与示范

  • 汪印 , 1, 2, 3 ,
  • 李智伟 , 1, 2, 3 ,
  • 李杰 1, 2, 3 ,
  • 刘学蛟 1, 2, 3 ,
  • 王兴栋 1, 2, 3 ,
  • 代敏 1, 2, 3 ,
  • 陈坤镇 1, 2, 3 ,
  • 邱胜 1, 2, 3
展开
  • 1. 中国科学院城市环境研究所, 区域与城市生态安全全国重点实验室, 厦门 361021
  • 2. 中国科学院城市环境研究所, 先进环境装备和污染防治技术全国重点实验室, 厦门 361021
  • 3. 中国科学院城市固体废弃物资源化技术工程实验室, 厦门 361021

汪印,研究员,研究方向为固废低碳资源转化技术与装备研发,电子信箱:

李智伟(共同第一作者),助理研究员,研究方向为固废资源化利用技术,电子信箱:

收稿日期: 2024-11-19

  网络出版日期: 2025-06-26

基金资助

中国科学院战略性先导科技专项A类项目子课题(XDA23030301)

厦门市自然科学基金项目(3502Z20227086)

版权

版权所有,未经授权,不得转载。

Technical research and demonstration project of the collaborative pyrolysis of sewage sludge and food waste digestate

  • Yin WANG , 1, 2, 3 ,
  • Zhiwei LI , 1, 2, 3 ,
  • Jie LI 1, 2, 3 ,
  • Xuejiao LIU 1, 2, 3 ,
  • Xingdong WANG 1, 2, 3 ,
  • Min DAI 1, 2, 3 ,
  • Kunzhen CHEN 1, 2, 3 ,
  • Sheng QIU 1, 2, 3
Expand
  • 1. State Key Laboratory for Ecological Security of Regions and Cities, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
  • 2. State Key Laboratory of Advanced Environmental Technology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
  • 3. Engineering Laboratory for Recycling Technology of Municipal Solid Waste, Chinese Academy of Sciences, Xiamen 361021, China

Received date: 2024-11-19

  Online published: 2025-06-26

Copyright

All rights reserved. Unauthorized reproduction is prohibited.

摘要

市政污泥和餐厨垃圾是城市代谢产生的2种典型有机固废,它们的低碳资源循环再利用是“无废城市”建设的重要一环。目前,在全国将污泥和餐厨垃圾厌氧沼渣协同资源化处置的案例较少,且其共热解制备的生物炭的理化性质及重金属的稳定固化效果尚不明晰。本研究从多源固废协同资源化再利用降低投资和运行成本的角度,首先对市政污泥和餐厨垃圾厌氧沼渣进行了共热解实验研究,然后建立了一套日处理能力干基20 t的脱水污泥与沼渣协同热解炭化示范装置,并进行了长时间稳定运行分析。结果表明,在600℃的热解温度下,随着沼渣向污泥中添加比例的增加,焦油和热解气产率降低,而生物炭产率则逐渐升高(质量分数由1∶0时的62.71%增加至1∶3时的73.14%);共热解后的钾和磷主要富集在生物炭中;共热解所得生物炭中重金属的残渣态和氧化态所占比例均高达80%以上,说明热解技术有利于重金属的稳定固化;与污泥生物炭相比,共热解生物炭中的O—H收缩振动峰有明显减弱,但—C=O吸收峰增强。示范工程运行结果表明,在热解温度400~500℃,单独污泥或沼渣以及污泥与沼渣混合热解后的生物炭得率基本在25%~30%;生物炭中的挥发分为13%~15%,高位热值在4500~5500 kJ·kg-1;生物炭中的固定碳含量 < 10%,这种碳非常稳定,将其施入土壤中后可以长期稳定存在而不被分解释放CO2,与污泥焚烧相比,热解1 t污泥相当于减排0.024 t的CO2;生物炭中的重金属形态更趋近于稳定固化,与实验室研究结果趋势一致。

本文引用格式

汪印 , 李智伟 , 李杰 , 刘学蛟 , 王兴栋 , 代敏 , 陈坤镇 , 邱胜 . 市政污泥与餐厨垃圾厌氧沼渣协同热解炭化技术研究与示范[J]. 科技导报, 2025 , 43(11) : 74 -86 . DOI: 10.3981/j.issn.1000-7857.2024.11.01612

1
黄艳琴, 甄宇航, 王晨州, 等. "双碳"背景下市政污泥热解资源化利用研究进展[J]. 材料导报, 2023, 37(10): 29- 34.

2
Liu M, Ogunmoroti A, Liu W, et al. Assessment and projection of environmental impacts of food waste treatment in China from life cycle perspectives[J]. Science of the Total Environment, 2022, 807: 150751.

DOI

3
乔翅嵩, 顾登海, 卢广亮, 等. 城镇生活污水处理厂污泥资源化利用研究进展[J]. 工业水处理, 2024(1): 1- 25.

4
赵水钎, 段妮娜, 顾敏燕. 城镇污水污泥处理处置碳减排技术研究与应用进展[J]. 环境工程, 2025(3): 1- 11.

5
Wang X D, Li C X, Zhang B, et al. Migration and risk assessment of heavy metals in sewage sludge during hydrothermal treatment combined with pyrolysis[J]. Bioresource Technology, 2016, 221: 560- 567.

DOI

6
Li C X, Wang R M, Yuan Z W, et al. Novel strategy for efficient energy recovery and pollutant control from sewage sludge and food waste treatment[J]. Water Research, 2024, 261: 122050.

DOI

7
崔彦发, 王世雄, 王珣, 等. 城市污泥建材化利用研究进展[J]. 新型建筑材料, 2025, 52(2): 114- 120.

8
王兴栋, 李春星, 尤甫天, 等. 污泥水热处理过程中氮元素的迁移转化[J]. 化工学报, 2018, 69(6): 2688- 2696.

9
Tian R Q, Li C X, Xie S Y, et al. Preparation of biochar via pyrolysis at laboratory and pilot scales to remove antibiotics and immobilize heavy metals in livestock feces[J]. Journal of Soils and Sediments, 2019, 19(7): 2891- 2902.

DOI

10
Li J, Li L Y, Suvarna M, et al. Wet wastes to bioenergy and biochar: A critical review with future perspectives[J]. Science of the Total Environment, 2022, 817: 152921.

DOI

11
Xie S Y, Yu G W, Ma J L, et al. Chemical speciation and distribution of potentially toxic elements in soilless cultivation of cucumber with sewage sludge biochar addition[J]. Environmental Research, 2020, 191: 110188.

DOI

12
王玉, 余广炜, 林佳佳, 等. 沼渣、飞灰和污泥生物炭制备建筑陶粒[J]. 化工进展, 2023, 42(2): 1039- 1050.

13
Li J, Yu G W, Xie S Y, et al. Immobilization of heavy metals in ceramsite produced from sewage sludge biochar[J]. Science of the Total Environment, 2018, 628: 131- 140.

14
韩通, 郭建华, 孙程万, 等. 污泥生物炭的掺入对水泥浆体性能的影响[J]. 水利科技与经济, 2021, 27(5): 1- 6.

15
Li J, Pan L J, Yu G W, et al. Synthesis of an easily recyclable and safe adsorbent from sludge pyrochar for ciprofloxacin adsorption[J]. Environmental Research, 2021, 192: 110258.

DOI

16
Li J, Pan L J, Yu G W, et al. The synthesis of heterogeneous Fenton-like catalyst using sewage sludge biochar and its application for ciprofloxacin degradation[J]. Science of the Total Environment, 2019, 654: 1284- 1292.

DOI

17
李杰, 潘兰佳, 余广炜, 等. 污泥生物炭制备吸附陶粒[J]. 环境科学, 2017, 38(9): 3970- 3978.

18
朱康健, 林梦婉, 曹燃, 等. 污泥秸秆生物炭的制备及其重金属吸附性能分析[J]. 环境监测管理与技术, 2025, 37(1): 87- 91.

19
郭世鹏, 王云刚, 白彦渊, 等. 市政污泥与花生壳共热解协同效应及产物分布研究[J]. 中国环境科学, 2024(1): 1- 11.

20
Li J, Pan L J, Li Z W, et al. Unveiling the migration of Cr and Cd to biochar from pyrolysis of manure and sludge using machine learning[J]. Science of the Total Environment, 2023, 885: 163895.

DOI

21
刘晓吉, 肖志颖, 石川, 等. 浅析我国餐厨垃圾资源化利用模式和技术路径[J]. 中国沼气, 2024, 42(2): 13- 19.

22
Li C X, Li J, Pan L J, et al. Treatment of digestate residues for energy recovery and biochar production: From lab to pilot-scale verification[J]. Journal of Cleaner Production, 2020, 265: 121852.

DOI

23
石垚, 李会泉, 陈少华, 等. 城市多源固废协同利用与区域绿色循环发展研究: 以东莞海心沙国家资源循环利用示范基地为例[J]. 中国科学院院刊, 2023, 38(12): 1804- 1817.

24
Li C X, Li J, Xie S Y, et al. Enhancement of heavy metal immobilization in sewage sludge biochar by combining alkaline hydrothermal treatment and pyrolysis[J]. Journal of Cleaner Production, 2022, 369: 133325.

DOI

25
Wang X D, Chang V W, Li Z W, et al. Co-pyrolysis of sewage sludge and food waste digestate to synergistically improve biochar characteristics and heavy metals immobilization[J]. Waste Management, 2022, 141: 231- 239.

DOI

26
Hung C Y, Tsai W T, Chen J W, et al. Characterization of biochar prepared from biogas digestate[J]. Waste Management, 2017, 66: 53- 60.

DOI

27
Wu M L, Liu B, Li J, et al. Influence of pyrolysis temperature on sludge biochar: The ecological risk assessment of heavy metals and the adsorption of Cd(Ⅱ)[J]. Environmental Science and Pollution Research International, 2023, 30(5): 12608- 12617.

28
Li C X, Wang Y, Xie S Y, et al. Synergistic treatment of sewage sludge and food waste digestate residues for efficient energy recovery and biochar preparation by hydrothermal pretreatment, anaerobic digestion, and pyrolysis[J]. Applied Energy, 2024, 364: 123203.

DOI

文章导航

/