成永军,研究员,研究方向为真空计量测试技术与仪器,电子信箱: chyj750418@163.com |
收稿日期: 2025-04-30
修回日期: 2025-05-22
网络出版日期: 2025-07-03
基金资助
国家自然科学基金项目(62371214)
版权
Advances in quantum vacuum measurement technology
Received date: 2025-04-30
Revised date: 2025-05-22
Online published: 2025-07-03
Copyright
成永军 , 孙雯君 , 董猛 , 贾文杰 , 范栋 . 量子真空测量技术研究进展[J]. 科技导报, 2025 , 43(12) : 65 -79 . DOI: 10.3981/j.issn.1000-7857.2025.04.00139
Optical vacuum measurement technology, with its remarkable advantages in expanding measurement ranges and breaking through uncertainty limitations, has emerged as a key technology supporting innovation in strategic fields such as deep space exploration, semiconductor manufacturing, and advanced equipment development. This paper initiates from the interaction mechanism between photons and gas molecules, comprehensively introducing theoretical model innovations and experimental setup breakthroughs in quantum optical methods for retrieving vacuum parameters, including Fabry−Perot cavity optical interferometry, cold atom collisional loss, and spectral absorption. It systematically reviews the latest developments from fundamental research to engineering applications by international research institutions in this field. In-depth analysis reveals existing bottleneck issues within current quantum vacuum measurement technology systems. Subsequently, potential evolution directions for quantum vacuum measurement technology are prospected through technical pathways such as quantum vacuum standard establishment and miniaturized device integration.
1 |
|
2 |
|
3 |
|
4 |
|
5 |
|
6 |
刘见, 王刚, 胡一鸣, 等. 首例引力波探测事件GW150914与引力波天文学[J]. 科学通报, 2016, 61: 1502- 1524.
|
7 |
|
8 |
Kłos J, Tiesinga E. Elastic and glancing−angle rate coefficients for heating of ultracold Li and Rb atoms by collisions with room−temperature noble gases, H2, and N2[J]. 2023, 158(1): 014308.
|
9 |
|
10 |
|
11 |
|
12 |
|
13 |
|
14 |
|
15 |
|
16 |
|
17 |
Halbey J, Bernien M, Rubin T, et al. Towards a dual species cold atom based pressure sensor[C]// 2023 CCM & IMEKO TC16 7th International Conference on Pressure and Vacuum Metrology, Washington DC, USA, 15−19. 2023: 1−4.
|
18 |
|
19 |
|
20 |
|
21 |
|
22 |
|
23 |
|
24 |
|
25 |
|
26 |
|
27 |
|
28 |
Rezki A, Silvestri Z, Bentouati D, et al. Status and performance of the LNE−cnam Fabry−Perot refractometer[C]// Proceedings of the 7th IMEKO TC16 Conference on Pressure and Vacuum Measurement. Washington DC: IMEKO, 2024: 1−6.
|
29 |
|
30 |
|
31 |
|
32 |
成永军, 董猛, 孙雯君, 等. 基于7Li冷原子操控的超高真空测量[J]. 物理学报, 2024, 73 (22): 64- 73.
|
33 |
|
34 |
|
35 |
张苏钊, 孙雯君, 董猛, 等. 基于磁光阱中6Li冷原子的真空度测量[J]. 物理学报, 2022, 71 (9): 145- 152.
|
36 |
张苏钊, 孙雯君, 董猛, 等. 基于冷原子的超高/极高真空测量机理研究进展[J]. 真空科学与技术学报, 2021, 41 (5): 391- 402.
|
37 |
|
38 |
|
39 |
范栋, 习振华, 贾文杰, 等. 量子真空计量标准中的非极性稀薄气体折射率测量研究[J]. 物理学报, 2021, 70 (4): 040602.
|
40 |
范栋, 李得天, 习振华, 等. 量子真空计量中的气体折射率测量方法研究[J]. 中国激光, 2021, 48 (23): 2304002.
|
41 |
贾文杰, 习振华, 范栋, 等. 基于Fabry−Perot激光谐振腔的量子真空计量技术研究[J]. 光学学报, 2020, 40 (22): 2212005.
|
42 |
贾文杰, 习振华, 董猛, 等. 基于Fabry−Perot光学干涉腔的真空计量装置研究进展[J]. 真空与低温, 2020, 26 (6): 431- 436.
|
43 |
范栋, 李得天, 成永军, 等. 基于双光梳的激光吸收谱真空分压力测量技术研究[J]. 宇航计测技术, 2023, 43 (1): 1- 5.
|
44 |
代虎, 王永军, 李得天. 基于宽波段激光吸收谱的真空分压力测量方法[J]. 真空与低温, 2020, 26 (1): 37- 41.
|
45 |
|
/
〈 |
|
〉 |