特色专题

量子真空测量技术研究进展

  • 成永军 ,
  • 孙雯君 ,
  • 董猛 ,
  • 贾文杰 ,
  • 范栋
展开
  • 兰州空间技术物理研究所, 真空技术与物理全国重点实验室, 兰州 730000

成永军,研究员,研究方向为真空计量测试技术与仪器,电子信箱:

收稿日期: 2025-04-30

  修回日期: 2025-05-22

  网络出版日期: 2025-07-03

基金资助

国家自然科学基金项目(62371214)

版权

版权所有,未经授权,不得转载。

Advances in quantum vacuum measurement technology

  • Yongjun CHENG ,
  • Wenjun SUN ,
  • Meng DONG ,
  • Wenjie JIA ,
  • Dong FAN
Expand
  • National Key Laboratory on Vacuum Technology and Physics, Lanzhou Institute of Physics, Lanzhou 730000, China

Received date: 2025-04-30

  Revised date: 2025-05-22

  Online published: 2025-07-03

Copyright

All rights reserved. Unauthorized reproduction is prohibited.

摘要

基于光学方法的量子真空测量技术凭借其在测量量程拓展与不确定度突破方面的显著优势,成为支撑深空探测、半导体制造、新型装备研发等战略领域创新发展的关键技术。从光量子与气体分子相互作用机理出发,介绍了法布里-珀罗腔光学干涉、冷原子碰撞损失、光谱吸收等量子光学方法反演真空参数的理论模型创新与实验装置突破,系统综述了国际研究机构在该领域从基础研究到工程转化的最新发展态势。深入分析揭示了现有量子真空测量技术体系存在的瓶颈问题,进而从量子真空基准构建、微型化器件集成等技术路径,展望了量子真空测量技术的演进发展方向。

本文引用格式

成永军 , 孙雯君 , 董猛 , 贾文杰 , 范栋 . 量子真空测量技术研究进展[J]. 科技导报, 2025 , 43(12) : 65 -79 . DOI: 10.3981/j.issn.1000-7857.2025.04.00139

Abstract

Optical vacuum measurement technology, with its remarkable advantages in expanding measurement ranges and breaking through uncertainty limitations, has emerged as a key technology supporting innovation in strategic fields such as deep space exploration, semiconductor manufacturing, and advanced equipment development. This paper initiates from the interaction mechanism between photons and gas molecules, comprehensively introducing theoretical model innovations and experimental setup breakthroughs in quantum optical methods for retrieving vacuum parameters, including Fabry−Perot cavity optical interferometry, cold atom collisional loss, and spectral absorption. It systematically reviews the latest developments from fundamental research to engineering applications by international research institutions in this field. In-depth analysis reveals existing bottleneck issues within current quantum vacuum measurement technology systems. Subsequently, potential evolution directions for quantum vacuum measurement technology are prospected through technical pathways such as quantum vacuum standard establishment and miniaturized device integration.

1
Martin−Delgado M A . The new SI and the fundamental constants of nature[J]. European Journal of Physics, 2020, 41 (6): 063003.

DOI

2
Jousten K , Hendricks J , Barker D , et al. Perspectives for a new realization of the pascal by optical methods[J]. Metrologia, 2017, 54 (6): S146- S161.

DOI

3
Scherschligt J , Fedchak J A , Ahmed Z , et al. Review article: Quantum−based vacuum metrology at the national institute of standards and technology[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2018, 36 (4): 040801.

4
Gibney E . Pressure's 400−year−old measurement techniques get an upgrade[J]. Nature, 2019, 570 (7762): 424- 425.

DOI

5
Li D T , Wang Y J , Zhang H Z , et al. Applications of vacuum measurement technology in China's space programs[J]. Space: Science & Technology, 2021, 23: 7592858.

6
刘见, 王刚, 胡一鸣, 等. 首例引力波探测事件GW150914与引力波天文学[J]. 科学通报, 2016, 61: 1502- 1524.

7
Scherschligt J , Fedchak J A , Barker D S , et al. Development of a new UHV/XHV pressure standard (cold atom vacuum standard)[J]. Metrologia, 2017, 54 (6): S125- S132.

DOI

8
Kłos J, Tiesinga E. Elastic and glancing−angle rate coefficients for heating of ultracold Li and Rb atoms by collisions with room−temperature noble gases, H2, and N2[J]. 2023, 158(1): 014308.

9
Barker D S , Acharya B P , Fedchak J A , et al. Precise quantum measurement of vacuum with cold atoms[J]. Review of Scientific Instruments, 2022, 93 (12): 121101.

DOI

10
Eckel S P , Barker D S , Fedchak J A , et al. Effect of glancing collisions in the cold−atom vacuum standard[J]. Physical Review A, 2025, 111 (2): 023317.

DOI

11
Sitaram A , Elgee P K , Campbell G K , et al. Confinement of an alkaline−earth element in a grating magneto−optical trap[J]. Review of Scientific Instruments, 2020, 91 (10): 103202.

DOI

12
Ehinger L H , AcharyaB P , Barker D S , et al. Comparison of two multiplexed portable cold-atom vacuum standards[J]. AVS Quantum Science, 2022, 4 (3): 034403.

DOI

13
Shen P R , Madison K W , Booth J L . Realization of a universal quantum pressure standard[J]. Metrologia, 2020, 57 (2): 025015.

DOI

14
Shen P R , Madison K W , Booth J L . Refining the cold atom pressure standard[J]. Metrologia, 2021, 58 (2): 022101.

DOI

15
Booth J L , Madison K W . Revising the universality hypothesis for room−temperature collisions[J]. Physical Review A, 2024, 110 (5): 052802.

DOI

16
Shen P R , Frieling E , Herperger K R , et al. Cross−calibration of atomic pressure sensors and deviation from quantum diffractive collision universality for light particles[J]. New Journal of Physics, 2023, 25 (5): 053018.

DOI

17
Halbey J, Bernien M, Rubin T, et al. Towards a dual species cold atom based pressure sensor[C]// 2023 CCM & IMEKO TC16 7th International Conference on Pressure and Vacuum Metrology, Washington DC, USA, 15−19. 2023: 1−4.

18
Halbey J , Bernien M , Rubin T , et al. Design advances on the dual species cold atom based pressure standard[J]. Measurement: Sensors, 2025, 38: 101695.

DOI

19
Egan P F , Stone J A , Ricker J E , et al. Comparison measurements of low−pressure between a laser refractometer and ultrasonic manometer[J]. Review of Scientific Instruments, 2016, 87 (5): 053113.

DOI

20
Egan P F , Stone J A , Hendricks J H , et al. Performance of a dual Fabry–Perot cavity refractometer[J]. Optics Letters, 2015, 40 (17): 3945- 3948.

DOI

21
Ricker J E , Douglass K O , Hendricks J H , et al. Gas pressure calibration from 0.01 Pa to 400000 Pa using a portable quantum traceable standard[J]. Measurement: Sensors, 2025, 38: 101676.

DOI

22
Silander I , Zakrisson J , Zelan M , et al. An Invar−based dual Fabry–Perot cavity refractometer for assessment of pressure with a pressure independent uncertainty in the sub−mPa region[J]. Journal of Vacuum Science & Technology B, 2023, 41 (6): 064206.

23
Zakrisson J , Silander I , Silva de Oliveira V , et al. Procedure for automated low uncertainty assessment of empty cavity mode frequencies in Fabry-Pérot cavity based refractometry[J]. Optics Express, 2024, 32 (3): 3959- 3973.

DOI

24
Zakrisson J , Silander I , Zelan M , et al. Gouy phase in the presence of gas in Fabry−Perot refractometers[J]. Optics Express, 2025, 33 (6): 12914- 12924.

DOI

25
Mari D , Pisani M , Astrua M , et al. Realisation of an optical pressure standard by a multi−reflection interferometric technique[J]. Measurement, 2023, 211: 112639.

DOI

26
Takei Y , Arai K , Yoshida H , et al. Development of an optical pressure measurement system using an external cavity diode laser with a wide tunable frequency range[J]. Measurement, 2020, 151: 107090.

DOI

27
Takei Y , Telada S , Yoshida H , et al. Challenges of an optical pressure standard in medium vacuum measurements[J]. Measurement: Sensors, 2022, 22: 100371.

DOI

28
Rezki A, Silvestri Z, Bentouati D, et al. Status and performance of the LNE−cnam Fabry−Perot refractometer[C]// Proceedings of the 7th IMEKO TC16 Conference on Pressure and Vacuum Measurement. Washington DC: IMEKO, 2024: 1−6.

29
Forssén C , Silander I , Zakrisson J , et al. Demonstration of a transportable fabry–Pérot refractometer by a ring−type comparison of dead−weight pressure balances at four European national metrology institutes[J]. Sensors, 2024, 24 (1): 1- 13.

DOI

30
Lanzinger E , Jousten K , Kühne M . Partial pressure measurement by means of infrared laser absorption spectroscopy[J]. Vacuum, 1998, 51 (1): 47- 51.

DOI

31
Yun D , Egbert S C , Malarich N A , et al. Temperature, pressure, velocity, and water vapor mole fraction profiles in a ramjet combustor using dual frequency comb spectroscopy and a high temperature absorption database[J]. Combustion and Flame, 2025, 273: 113922.

DOI

32
成永军, 董猛, 孙雯君, 等. 基于7Li冷原子操控的超高真空测量[J]. 物理学报, 2024, 73 (22): 64- 73.

33
Sun W J , Wu X M , Cheng Y J , et al. Cold atom technology applied to ultra−high vacuum (UHV) measurements[J]. Vacuum, 2024, 222: 113079.

DOI

34
Wu X M , Cheng Y J , Dong M , et al. Advances in cold atom UHV/XHV metrology[J]. Vacuum, 2023, 207: 111561.

DOI

35
张苏钊, 孙雯君, 董猛, 等. 基于磁光阱中6Li冷原子的真空度测量[J]. 物理学报, 2022, 71 (9): 145- 152.

36
张苏钊, 孙雯君, 董猛, 等. 基于冷原子的超高/极高真空测量机理研究进展[J]. 真空科学与技术学报, 2021, 41 (5): 391- 402.

37
Yang Y C , Rubin T , Sun J P . Characterization of a vacuum pressure standard based on optical refractometry using nitrogen developed at NIM[J]. Vacuum, 2021, 194: 110598.

DOI

38
Ma K , Yang Y C , Feng X J . Low−pressureLow−pressure performance of a Fabry–Pérot cavity based optical pressure standard working at the zero−thermal−expansion temperature[J]. Vacuum, 2024, 221: 112861.

DOI

39
范栋, 习振华, 贾文杰, 等. 量子真空计量标准中的非极性稀薄气体折射率测量研究[J]. 物理学报, 2021, 70 (4): 040602.

40
范栋, 李得天, 习振华, 等. 量子真空计量中的气体折射率测量方法研究[J]. 中国激光, 2021, 48 (23): 2304002.

41
贾文杰, 习振华, 范栋, 等. 基于Fabry−Perot激光谐振腔的量子真空计量技术研究[J]. 光学学报, 2020, 40 (22): 2212005.

42
贾文杰, 习振华, 董猛, 等. 基于Fabry−Perot光学干涉腔的真空计量装置研究进展[J]. 真空与低温, 2020, 26 (6): 431- 436.

43
范栋, 李得天, 成永军, 等. 基于双光梳的激光吸收谱真空分压力测量技术研究[J]. 宇航计测技术, 2023, 43 (1): 1- 5.

44
代虎, 王永军, 李得天. 基于宽波段激光吸收谱的真空分压力测量方法[J]. 真空与低温, 2020, 26 (1): 37- 41.

45
Dai H , Fan D , Ren X Y , et al. Vacuum partial pressure measurement using low−budget dual comb system[J]. Vacuum, 2024, 224: 113105.

文章导航

/