特色专题

冰刻技术研究进展与展望

  • 赵康 , 1 ,
  • 赵鼎 , 1, * ,
  • 仇旻 , 1, 2, 3, *
展开
  • 1. 西湖大学光电研究院, 浙江省3D微纳加工和表征研究重点实验室, 杭州 311421
  • 2. 西湖大学工学院电子信息工程系, 杭州 310030
  • 3. 浙江西湖高等研究院, 前沿技术研究所, 杭州 310024
赵鼎(共同通信作者),研究员,研究方向为冰刻微纳加工技术,电子信箱:
仇旻(通信作者),教授,欧洲科学院院士,研究方向为微纳光电子学,电子信箱:

赵康,助理研究员,研究方向为冰刻微纳加工技术,电子信箱:

收稿日期: 2025-05-01

  网络出版日期: 2025-07-03

基金资助

国家自然科学基金项目(U21A20494)

国家自然科学基金项目(52203305)

国家自然科学基金项目(61927820)

版权

版权所有,未经授权,不得转载。

Ice lithography: Advances and prospects

  • Kang ZHAO , 1 ,
  • Ding ZHAO , 1, * ,
  • Min QIU , 1, 2, 3, *
Expand
  • 1. Zhejiang Key Laboratory of 3D Micro/Nano Fabrication and Characterization, Westlake Institute for Optoelectronics, Hangzhou 311421, China
  • 2. Department of Electronic and Information Engineering, School of Engineering, Westlake University, Hangzhou 310030, China
  • 3. Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, China

Received date: 2025-05-01

  Online published: 2025-07-03

Copyright

All rights reserved. Unauthorized reproduction is prohibited.

摘要

冰刻技术(ice lithography)是一种基于电子束与低温材料相互作用的新型微纳加工方法,通过将特定气体在低温衬底表面凝结成固态冰胶,利用电子束辐照实现纳米精度的图案直写与转移。冰刻技术自提出以来凭借其独特优势快速发展:一是冰胶对电子束的低敏感性支持加工过程原位观察,可实现高精度套刻;二是冰胶可均匀覆盖非平面衬底,突破传统加工工艺对衬底平整度的依赖;三是冰胶经过升温即可去除,可实现全程无须溶剂的绿色加工,为敏感易损材料的加工提供了解决方案。回顾了冰刻技术的发展历程,从技术特点、加工精度、设备演进、工艺应用等方面总结了冰刻技术的重要成果和进展,并对未来的发展方向进行了展望。希望能激发跨学科的前沿研究,挖掘冰刻这一新兴技术在三维光电器件、生物传感、柔性电子等领域的应用潜力。

本文引用格式

赵康 , 赵鼎 , 仇旻 . 冰刻技术研究进展与展望[J]. 科技导报, 2025 , 43(12) : 80 -92 . DOI: 10.3981/j.issn.1000-7857.2025.05.00088

1
Orji N G , Badaroglu M , Barnes B M , et al. Metrology for the next generation of semiconductor devices[J]. Nature Electronics, 2018, 1: 532- 547.

DOI

2
Sun Y M , Liu N , Cui Y . Promises and challenges of nanomaterials for lithium−based rechargeable batteries[J]. Nature Energy, 2016, 1 (7): 16071.

DOI

3
Shi J J , Votruba A R , Farokhzad O C , et al. Nanotechnology in drug delivery and tissue engineering: From discovery to applications[J]. Nano Letters, 2010, 10 (9): 3223- 3230.

DOI

4
Lin C H , Cheng B , Li T Y , et al. Orthogonal lithography for halide perovskite optoelectronic nanodevices[J]. ACS Nano, 2019, 13 (2): 1168- 1176.

5
Kasani S , Curtin K , Wu N Q . A review of 2D and 3D plasmonic nanostructure array patterns: Fabrication, light management and sensing applications[J]. Nanophotonics, 2019, 8 (12): 2065- 2089.

DOI

6
Zhao D , Han A P , Qiu M . Ice lithography for 3D nanofabrication[J]. Science Bulletin, 2019, 64 (12): 865- 871.

DOI

7
King G M , Schürmann G , Branton D , et al. Nanometer patterning with ice[J]. Nano Letters, 2005, 5 (6): 1157- 1160.

DOI

8
Han A P , Kuan A , Golovchenko J , et al. Nanopatterning on nonplanar and fragile substrates with ice resists[J]. Nano Letters, 2012, 12 (2): 1018- 1021.

DOI

9
Hong Y , Zhao D , Liu D L , et al. Three−dimensional in situ electron−beam lithography using water ice[J]. Nano Letters, 2018, 18 (8): 5036- 5041.

DOI

10
Elsukova A , Han A P , Zhao D , et al. Effect of molecular weight on the feature size in organic ice resists[J]. Nano Letters, 2018, 18 (12): 7576- 7582.

DOI

11
Han A P , Chervinsky J , Branton D , et al. An ice lithography instrument[J]. Review of Scientific Instruments, 2011, 82 (6): 065110.

DOI

12
Tiddi W , Elsukova A , Beleggia M , et al. Organic ice resists for 3D electron−beam processing: Instrumentation and operation[J]. Microelectronic Engineering, 2018, 192: 38- 43.

DOI

13
Hong Y , Zhao D , Liu D L , et al. Development of an in situ nanofabrication instrument for ice lithography[J]. Microelectronic Engineering, 2020, 224: 111251.

DOI

14
Zheng R , Qi L M , Li S Z , et al. Liquid hydrogen temperature cryostage for ice−assisted electron−beam lithography[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 1504304.

15
Yang Z R , Wu S , Zhao K , et al. Patterning on living tardigrades[J]. Nano Letters, 2025, 25 (15): 6168- 6175.

DOI

16
Talmon Y , Davis H T , Scriven L E , et al. Mass loss and etching of frozen hydrated specimens[J]. Journal of Microscopy, 1979, 117 (3): 321- 332.

DOI

17
Tiddi W , Elsukova A , Le H T , et al. Organic ice resists[J]. Nano Letters, 2017, 17 (12): 7886- 7891.

DOI

18
洪宇. 水基冰刻电子束曝光微纳加工技术及应用[D]. 杭州: 浙江大学, 2021.

19
Hong Y , Zhao D , Wang J Y , et al. Solvent−free nanofabrication based on ice−assisted electron−beam lithography[J]. Nano Letters, 2020, 20 (12): 8841- 8846.

DOI

20
Yao G N , Zhao D , Hong Y , et al. Ice−assisted electron−beam lithography for MoS2 transistors with extremely low−energy electrons[J]. Nanoscale Advances, 2022, 4 (11): 2479- 2483.

DOI

21
Qiu M, Sun X, Jin B, et al. Ice−assisted soft−landing deposition for van der Waals integration[J/OL]. Research Squrae, 2024, https://doi.org/10.21203/rs.3.rs−3725639/v1.

22
Liu K P , Guo J Y , Tian S Q , et al. A simulation study of grayscale ice lithography for spiral phase plates in near infrared wavelengths[J]. Microelectronic Engineering, 2025, 297: 112308.

DOI

23
Guo J Y , Liu K P , Tian S Q , et al. Multiple Aztec steps as an angle resolved micro−spectrometer by grayscale ice lithography[J]. Microelectronic Engineering, 2025, 297: 112309.

DOI

24
Guo J Y , Tian S Q , Yuan W T , et al. Simulation study of three−dimensional grayscale ice lithography on amorphous solid water for blazed gratings[J]. Microelectronic Engineering, 2024, 284: 112129.

25
Zhao D , Chang B D , Beleggia M . Electron−beam patterning of vapor−deposited solid anisole[J]. ACS Applied Materials & Interfaces, 2020, 12 (5): 6436- 6441.

26
Haque R I , Waafi A K , Chang B D , et al. Ice lithography using tungsten hexacarbonyl[J]. Micro and Nano Engineering, 2023, 18: 100171.

DOI

27
Chang B D , Anand G A E , Le H T , et al. 3D ice lithography and post−processing using gold organometallic precursor[J]. Additive Manufacturing, 2025, 98: 104645.

DOI

28
Wu S , Zhao D , Yao G N , et al. Lithographic properties of amorphous solid water upon exposure to electrons[J]. Applied Surface Science, 2021, 539: 148265.

DOI

29
姚光南. 面向二维材料加工应用的冰胶电子束光刻[D]. 杭州: 浙江大学, 2022.

30
Haque R I , Waafi A K , Jaemin K , et al. 80 K cryogenic stage for ice lithography[J]. Micro and Nano Engineering, 2022, 14: 100101.

DOI

31
Qi L M , Zheng R , Liu D L , et al. A micromachined Joule−Thomson cryocooler for ice lithography[J]. Microelectronic Engineering, 2024, 289: 112180.

DOI

32
Wang H , Zhang W , Ladika D , et al. Two−photon polymerization lithography for optics and photonics: Fundamentals, materials, technologies, and applications[J]. Advanced Functional Materials, 2023, 33 (39): 2214211.

DOI

33
Wu S , Zhao D , Qiu M . 3D nanoprinting by electron−beam with an ice resist[J]. ACS Applied Materials & Interfaces, 2022, 14 (1): 1652- 1658.

34
Waafi A K , Chang B D , Lyngholm−Kjærby J , et al. Electron beam processing of organic ice for low−toxicity submicrometer additive manufacturing[J]. Additive Manufacturing, 2024, 84: 104114.

DOI

35
Gardener J A , Golovchenko J A . Ice−assisted electron beam lithography of graphene[J]. Nanotechnology, 2012, 23 (18): 185302.

DOI

36
Yao G N , Zhao D , Hong Y , et al. Direct electron−beam patterning of monolayer MoS2 with ice[J]. Nanoscale, 2020, 12 (44): 22473- 22477.

DOI

37
Jin B B , Hong Y , Li Z Q , et al. Ice−assisted electron−beam lithography for halide perovskite optoelectronic nanodevices[J]. Nano Energy, 2022, 102: 107692.

DOI

38
Lu Y H , Jin B B , Zheng R , et al. Production and patterning of fluorescent quantum dots by cryogenic electron−beam writing[J]. ACS Applied Materials & Interfaces, 2023, 15 (9): 12154- 12160.

39
Chiaro D A , Hager T J , Renshaw K T , et al. Precise fabrication of graphite−like material directly on a biological membrane enabled by ethanol ice resist[J]. Nano Letters, 2025, 25 (17): 7107- 7114.

DOI

40
Burns R , Chiaro D , Davison H , et al. Stabilizing metal halide perovskite films via chemical vapor deposition and cryogenic electron beam patterning[J]. Small, 2025, 21 (2): 2406815.

DOI

41
Zheng R , Zhao D , Lu Y H , et al. Recording messages on nonplanar objects by cryogenic electron−beam writing[J]. Advanced Functional Materials, 2022, 32 (19): 2112894.

DOI

42
Yang Z R , Wu S , Zhao K , et al. Tattooing water bears: Microfabrication on living organisms[J]. Science Bulletin, 2025, S2095-9273 (25): 00361-5.

文章导航

/