特色专题

冰刻技术研究进展与展望

  • 赵康 ,
  • 赵鼎 ,
  • 仇旻
展开
  • 1. 西湖大学光电研究院, 浙江省3D微纳加工和表征研究重点实验室, 杭州 311421;
    2. 西湖大学工学院电子信息工程系, 杭州 310030;
    3. 浙江西湖高等研究院, 前沿技术研究所, 杭州 310024
赵康,助理研究员,研究方向为冰刻微纳加工技术,电子信箱:zhaokang@wioe.westlake.edu.cn;赵鼎(共同通信作者),研究员,研究方向为冰刻微纳加工技术,电子信箱:zhaoding@wioe.westlake.edu.cn;仇旻(通信作者),教授,欧洲科学院院士,研究方向为微纳光电子学,电子信箱:qiu_lab@westlake.edu.cn

收稿日期: 2025-05-01

  修回日期: 2025-06-19

  网络出版日期: 2025-07-03

基金资助

国家自然科学基金项目(U21A20494,52203305,61927820)

Ice lithography: Advances and prospects

  • ZHAO Kang ,
  • ZHAO Ding ,
  • QIU Min
Expand
  • 1. Zhejiang Key Laboratory of 3D Micro/Nano Fabrication and Characterization, Westlake Institute for Optoelectronics, Hangzhou 311421, China;
    2. Department of Electronic and Information Engineering, School of Engineering, Westlake University, Hangzhou 310030, China;
    3. Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, China

Received date: 2025-05-01

  Revised date: 2025-06-19

  Online published: 2025-07-03

摘要

冰刻技术(ice lithography)是一种基于电子束与低温材料相互作用的新型微纳加工方法,通过将特定气体在低温衬底表面凝结成固态冰胶,利用电子束辐照实现纳米精度的图案直写与转移。冰刻技术自提出以来凭借其独特优势快速发展:一是冰胶对电子束的低敏感性支持加工过程原位观察,可实现高精度套刻;二是冰胶可均匀覆盖非平面衬底,突破传统加工工艺对衬底平整度的依赖;三是冰胶经过升温即可去除,可实现全程无须溶剂的绿色加工,为敏感易损材料的加工提供了解决方案。回顾了冰刻技术的发展历程,从技术特点、加工精度、设备演进、工艺应用等方面总结了冰刻技术的重要成果和进展,并对未来的发展方向进行了展望。希望能激发跨学科的前沿研究,挖掘冰刻这一新兴技术在三维光电器件、生物传感、柔性电子等领域的应用潜力。

本文引用格式

赵康 , 赵鼎 , 仇旻 . 冰刻技术研究进展与展望[J]. 科技导报, 2025 , 43(12) : 80 -92 . DOI: 10.3981/j.issn.1000-7857.2025.05.00088

Abstract

Ice lithography (IL) is an emerging micro/nanofabrication technique based on electron beam interaction with cryogenic materials, which enables direct writing and transfer of nanoscale patterns through localized electron beam irradiation on solid ice resists formed by gas condensation on cryogenic substrates. Since its inception, this technology has rapidly evolved with distinctive advantages: Firstly, the low electron sensitivity of ice resists permits in situ observation during processing, facilitating high-precision overlay alignment. Secondly, ice films demonstrate exceptional conformal coverage on non-planar substrates, overcoming the planarization constraints inherent to conventional lithography. Thirdly, the solvent-free removal of ice resists via thermal desorption establishes an environmentally benign process, particularly advantageous for processing sensitive and fragile materials. This review systematically examines the historical development of IL, comprehensively summarizes key advancements in technical characteristics, fabrication accuracy, equipment evolution, and process applications, while providing prospects for future directions. It aims to stimulate interdisciplinary research and explore the application potential of this novel technology in emerging fields including three-dimensional optoelectronic devices, biosensing platforms, and flexible electronics.

参考文献

[1] Orji N G, Badaroglu M, Barnes B M, et al. Metrology for the next generation of semiconductor devices[J]. Nature Electronics, 2018, 1: 532-547.
[2] Sun Y M, Liu N, Cui Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries[J]. Nature Energy, 2016, 1(7): 16071.
[3] Shi J J, Votruba A R, Farokhzad O C, et al. Nanotechnology in drug delivery and tissue engineering: From discovery to applications[J]. Nano Letters, 2010, 10(9): 3223-3230.
[4] Lin C H, Cheng B, Li T Y, et al. Orthogonal lithography for halide perovskite optoelectronic nanodevices[J]. ACS Nano, 2019, 13(2): 1168-1176.
[5] Kasani S, Curtin K, Wu N Q. A review of 2D and 3D plasmonic nanostructure array patterns: Fabrication, light management and sensing applications[J]. Nanophotonics, 2019, 8(12): 2065-2089.
[6] Zhao D, Han A P, Qiu M. Ice lithography for 3D nanofabrication[J]. Science Bulletin, 2019, 64(12): 865-871.
[7] King G M, Schürmann G, Branton D, et al. Nanometer patterning with ice[J]. Nano Letters, 2005, 5(6): 1157-1160.
[8] Han A P, Kuan A, Golovchenko J, et al. Nanopatterning on nonplanar and fragile substrates with ice resists[J]. Nano Letters, 2012, 12(2): 1018-1021.
[9] Hong Y, Zhao D, Liu D L, et al. Three-dimensional in situ electron-beam lithography using water ice[J]. Nano Letters, 2018, 18(8): 5036-5041.
[10] Elsukova A, Han A P, Zhao D, et al. Effect of molecular weight on the feature size in organic ice resists[J]. Nano Letters, 2018, 18(12): 7576-7582.
[11] Han A P, Chervinsky J, Branton D, et al. An ice lithography instrument[J]. Review of Scientific Instruments, 2011, 82(6): 065110.
[12] Tiddi W, Elsukova A, Beleggia M, et al. Organic ice resists for 3D electron-beam processing: Instrumentation and operation[J]. Microelectronic Engineering, 2018, 192: 38-43.
[13] Hong Y, Zhao D, Liu D L, et al. Development of an in situ nanofabrication instrument for ice lithography[J]. Microelectronic Engineering, 2020, 224: 111251.
[14] Zheng R, Qi L M, Li S Z, et al. Liquid hydrogen temperature cryostage for ice-assisted electron-beam lithography[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 1504304.
[15] Yang Z R, Wu S, Zhao K, et al. Patterning on living tardigrades[J]. Nano Letters, 2025, 25(15): 6168-6175.
[16] Talmon Y, Davis H T, Scriven L E, et al. Mass loss and etching of frozen hydrated specimens[J]. Journal of Microscopy, 1979, 117(3): 321-332.
[17] Tiddi W, Elsukova A, Le H T, et al. Organic ice resists[J]. Nano Letters, 2017, 17(12): 7886-7891.
[18] 洪宇. 水基冰刻电子束曝光微纳加工技术及应用[D]. 杭州: 浙江大学, 2021.
[19] Hong Y, Zhao D, Wang J Y, et al. Solvent-free nanofabrication based on ice-assisted electron-beam lithography[J]. Nano Letters, 2020, 20(12): 8841-8846.
[20] Yao G N, Zhao D, Hong Y, et al. Ice-assisted electron-beam lithography for MoS2 transistors with extremely low-energy electrons[J]. Nanoscale Advances, 2022, 4(11): 2479-2483.
[21] Qiu M, Sun X, Jin B, et al. Ice-assisted soft-landing deposition for van der Waals integration[J/OL]. Research Squrae, 2024, https://doi.org/10.21203/rs.3.rs-3725639/v1.
[22] Liu K P, Guo J Y, Tian S Q, et al. A simulation study of grayscale ice lithography for spiral phase plates in near infrared wavelengths[J]. Microelectronic Engineering, 2025, 297: 112308.
[23] Guo J Y, Liu K P, Tian S Q, et al. Multiple Aztec steps as an angle resolved micro-spectrometer by grayscale ice lithography[J]. Microelectronic Engineering, 2025, 297: 112309.
[24] Guo J Y, Tian S Q, Yuan W T, et al. Simulation study of three-dimensional grayscale ice lithography on amorphous solid water for blazed gratings[J]. Microelectronic Engineering, 2024, 284: 112129.
[25] Zhao D, Chang B D, Beleggia M. Electron-beam patterning of vapor-deposited solid anisole[J]. ACS Applied Materials & Interfaces, 2020, 12(5): 6436-6441.
[26] Haque R I, Waafi A K, Chang B D, et al. Ice lithography using tungsten hexacarbonyl[J]. Micro and Nano Engineering, 2023, 18: 100171.
[27] Chang B D, Anand G A E, Le H T, et al. 3D ice lithography and post-processing using gold organometallic precursor[J]. Additive Manufacturing, 2025, 98: 104645.
[28] Wu S, Zhao D, Yao G N, et al. Lithographic properties of amorphous solid water upon exposure to electrons[J]. Applied Surface Science, 2021, 539: 148265.
[29] 姚光南. 面向二维材料加工应用的冰胶电子束光刻[D]. 杭州: 浙江大学, 2022.
[30] Haque R I, Waafi A K, Jaemin K, et al. 80 K cryogenic stage for ice lithography[J]. Micro and Nano Engineering, 2022, 14: 100101.
[31] Qi L M, Zheng R, Liu D L, et al. A micromachined Joule-Thomson cryocooler for ice lithography[J]. Microelectronic Engineering, 2024, 289: 112180.
[32] Wang H, Zhang W, Ladika D, et al. Two-photon polymerization lithography for optics and photonics: Fundamentals, materials, technologies, and applications[J]. Advanced Functional Materials, 2023, 33(39): 2214211.
[33] Wu S, Zhao D, Qiu M. 3D nanoprinting by electron-beam with an ice resist[J]. ACS Applied Materials & Interfaces, 2022, 14(1): 1652-1658.
[34] Waafi A K, Chang B D, Lyngholm-Kjærby J, et al. Electron beam processing of organic ice for low-toxicity submicrometer additive manufacturing[J]. Additive Manufacturing, 2024, 84: 104114.
[35] Gardener J A, Golovchenko J A. Ice-assisted electron beam lithography of graphene[J]. Nanotechnology, 2012, 23(18): 185302.
[36] Yao G N, Zhao D, Hong Y, et al. Direct electron-beam patterning of monolayer MoS2 with ice[J]. Nanoscale, 2020, 12(44): 22473-22477.
[37] Jin B B, Hong Y, Li Z Q, et al. Ice-assisted electron-beam lithography for halide perovskite optoelectronic nanodevices[J]. Nano Energy, 2022, 102: 107692.
[38] Lu Y H, Jin B B, Zheng R, et al. Production and patterning of fluorescent quantum dots by cryogenic electron-beam writing[J]. ACS Applied Materials & Interfaces, 2023, 15(9): 12154-12160.
[39] Chiaro D A, Hager T J, Renshaw K T, et al. Precise fabrication of graphite-like material directly on a biological membrane enabled by ethanol ice resist[J]. Nano Letters, 2025, 25(17): 7107-7114.
[40] Burns R, Chiaro D, Davison H, et al. Stabilizing metal halide perovskite films via chemical vapor deposition and cryogenic electron beam patterning[J]. Small, 2025, 21(2): 2406815.
[41] Zheng R, Zhao D, Lu Y H, et al. Recording messages on nonplanar objects by cryogenic electron-beam writing[J]. Advanced Functional Materials, 2022, 32(19): 2112894.
[42] Yang Z R, Wu S, Zhao K, et al. Tattooing water bears: Microfabrication on living organisms[J]. Science Bulletin, 2025, S2095-9273(25): 00361-5.
文章导航

/