特色专题

托卡马克聚变装置的关键突破与展望

  • 武松涛
展开
  • 华中科技大学聚变研究中心, 武汉 430074

武松涛,教授,研究方向为核聚变工程,电子信箱:

收稿日期: 2025-03-11

  网络出版日期: 2025-07-03

版权

版权所有,未经授权,不得转载。

Key breakthroughs and prospects of Tokamak fusion devices

  • Songtao WU
Expand
  • Fusion Research Center, Huazhong University of Science and Technology, Wuhan 430074, China

Received date: 2025-03-11

  Online published: 2025-07-03

Copyright

All rights reserved. Unauthorized reproduction is prohibited.

摘要

综述了国际托卡马克型核聚变装置的发展、现状及未来展望。阐述了聚变能相对其他能源所具有的安全性高、燃料储量丰富、能量密度高、不会产生二氧化碳等温室气体、环境友好等优势;回顾了托卡马克的发展历程,从20世纪50年代托卡马克概念的提出到如今国际热核聚变实验堆的建造,重点介绍在国际上产生过重要影响成果及取得了重要关键技术突破的著名托卡马克装置,如那些验证了可控核聚变的科学可行性,获得了最高聚变能增益,创造了等离子体三乘积世界纪录,获得最高等离子体温度,发现了重要物理现象、机理与机制、发现或提出了新的或先进的运行模式的托卡马克装置;分析了托卡马克聚变堆尚待解决的诸如燃料循环、氚自持、材料等关键科学与技术挑战;最后展望了聚变堆托卡马克的未来发展方向及聚变能商业化前景。旨在为核聚变研究领域提供参考。

本文引用格式

武松涛 . 托卡马克聚变装置的关键突破与展望[J]. 科技导报, 2025 , 43(12) : 121 -137 . DOI: 10.3981/j.issn.1000-7857.2025.03.00046

1
Singer B, Bingham D R, Corbett B, et al. AI/data centers' global power surge and the Sustainability impact[R]. Gold−man Sachs, 2024.

2
杨军, 张恩昊, 郭志恒, 等. 全球核能科技前沿综述[J]. 科技导报, 2020, 38 (20): 35- 49.

DOI

3
叶奇蓁. 核电高质量创新发展[Z]. 中核工程2025年科学技术委员会全体大会, 2025.

4
杨军, 孙培杰, 彭翠婷, 等. 世界核能科技发展前沿进展[J]. 科技导报, 2024, 42 (23): 7- 30.

DOI

5
Armstrong R C, Whyte D G, Field R, et al. The role of fusion power in deep decarbonization scenarios[R]. MIT Energy Initiative (MITEI), MIT Plasma Science and Fusion Center, 2024.

6
Shafranov V D , Bondarenko B D , Goncharov G A , et al. On the history of the research into controlled thermonuclear fusion[J]. Uspekhi Fizicheskih Nauk, 2001, 171 (8): 877.

7
Sakharov A D , Tamm I E . Possible configuration of a thermonuclear reactor[J]. Journal of Experimental and Theoretical Physics, 1950, 1: 733- 734.

8
Arnoux Robert. Which was the first "tokamak"—or was it "tokomag"?[EB/OL]. (2008−10−27)[2025−05−12]. https://www.iter.org/node/20687/which-was-first-tokamak-or-was-it-tokomag.

9
Waldrop M M. Pursuing fusion power[J/OL]. Knowable Magazine, (2023−11−01)[2025−05−12]. https://knowablema-gazine.org/content/article/physical-world/2023/the-challenge-of-fusion-power.

10
Smirnov V P . Tokamak foundation in USSR/Russia 1950−1990[J]. Nuclear Fusion, 2010, 50 (1): 014003.

DOI

11
Peacock N J , Robinson D C , Forrest M J , et al. Measurement of the electron temperature by Thomson scattering in tokamak T3[J]. Nature, 1969, 224 (5218): 488- 490.

DOI

12
Hawryluk R J. Preparing for TFTR D−T Experiments[R]. Princeton: Princeton Plasma Physics Laboratory, 2014.

13
Hawryluk R J . Results from D−T experiments on TFTR and implications for achieving an ignited plasma[J]. Philosophical Transactions of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 1999, 357 (1752): 443- 469.

DOI

14
Lithuanian Energy Institute. European researches achieve fusion energy record[R]. Kaunas: Lithuanian Energy Institute, 2022.

15
EUROfusion. History of Fusion[EB/OL]. (2022−02−10)[2025−05−12]. https://euro-fusion.org/fusion/history-of-fusion/.

16
Gibney E . Nuclear−fusion reactor smashes energy record[J]. Nature, 2022, 602 (7897): 371.

DOI

17
Scott−Mearns N, Windridge M. New fusion energy record from JET's final tritium experiments[EB/OL]. (2024−02−09)[2025−05−12]. https://fusionenergyinsights.com/blog/post/new-fusion-energy-record-from-jet-s-final-tritium-experi-ments.

18
万宝年. 人造太阳: EAST全超导托卡马克核聚变实验装置[M]. 杭州: 浙江教育出版社, 2017.

19
Fujita T, Kamada Y, Ishida S, et al. High performance experiments in JT−60U high current divertor discharges[R]. Japan Atomic Energy Research Institute.

20
EuroFusion. Fusion experiment ASDEX Upgrade in Garching near Munich[EB/OL]. (2024−06−09)[2025−05−12]. https://euro-fusion.org/ml-content/asdex-upgrade/.

21
Wagner F , Becker G , Behringer K , et al. Regime of improved confinement and high beta in neutral−beam−heated divertor discharges of the ASDEX tokamak[J]. Physical Review Letters, 1982, 49 (19): 1408- 1412.

DOI

22
Keilhacker M , Team A . The ASDEX divertor tokamak[J]. Nuclear Fusion, 1985, 25 (9): 1045- 1054.

DOI

23
Hellsten T . Plasma physics and controlled nuclear fusion research 1978[J]. Nuclear Instruments and Methods, 1979, 166 (3): 591.

24
Greenwald M , Gwinn D , Milora S , et al. Energy confinement of high−density pellet−fueled plasmas in the alcator C tokamak[J]. Physical Review Letters, 1984, 53 (4): 352- 355.

DOI

25
可控核聚变. 紧凑高场托卡马克装置: 美国Alcator C−Mod[EB/OL]. (2025−05−31)[2025−05−31]. https://www.nuclear-fusion.com.cn/blog/alcator-c-mod.

26
Greenwald M , Bader A , Baek S , et al. 20 years of research on the alcator C−mod tokamak[J]. Physics of Plasma, 2014, 21: 110501.

DOI

27
Plasma Science and Fusion Center. New record for fusion[EB/OL]. (2016−10−14) [2025−05−12]. https://energy.mit.edu/news/new-record-fusion/.

28
Haack J . Superconductivity for nuclear fusion: Past, present, and future[J]. Arabian Journal for Science and Engineering, 2025, 50: 3233- 3237.

DOI

29
Chernoplekov N A , Kiknadze G I , Nenarochkin P V . On the testing of large superconducting magnet systems[J]. Cryogenics, 1983, 23 (3): 168- 169.

DOI

30
Khvostenko P P , Anashkin I O , Bondarchuk E N , et al. Current status of tokamak T−15MD[J]. Fusion Engineering and Design, 2021, 164: 112211.

DOI

31
Zushi H , Itoh S , Hanada K , et al. Overview of steady state tokamak plasma experiments in TRIAM−1M[J]. Nuclear Fusion, 2003, 43 (12): 1600- 1609.

DOI

32
Zushi H, Nakamura K, Hanada K, et al. Overview of steady−state tokamak operation and current drive experiments in TRIAM−1M[C]. 20th IAEA Fusion Energy Conference. Vilamoura, 2004.

33
Pamela J . Ten years of operation and developments on tore supra[J]. Fusion Engineering and Design, 1999, 46 (2/3/4): 313- 322.

34
van Houtte D , Martin G , Bécoulet A , et al. Recent fully non−inductive operation results in Tore Supra with 6 min, 1 GJ plasma discharges[J]. Nuclear Fusion, 2004, 44 (5): L11- L15.

DOI

35
CEA. Nuclear fusion: WEST beats the world record for plasma duration![EB/OL]. (2025−02−18) [2025−05−12]. https://www.cea.fr/english/Pages/News/nuclear-fusion-west-beats-the-world-record-for-plasma-duration.aspx.

36
Schmidt J A , Thomassen K I , Goldston R J , et al. The design of the tokamak physics experiment (TPX)[J]. Journal of Fusion Energy, 1993, 12 (3): 221- 258.

DOI

37
Wu S T . An overview of the EAST project[J]. Fusion Engineering and Design, 2007, 82 (5/6/7/8/9/10/11/12/13/14): 463- 471.

38
中国科学院. 中国"人造太阳"实现1.2亿度101秒等离子体运行[EB/OL]. (2022−01−11) [2025−05−12]. https://www.cas.cn/jh/202201/t20220111_4821653.shtml.

39
中国科学院. EAST装置实现1056秒的长脉冲高参数等离子体运行[EB/OL]. (2021−12−31) [2025−05−12]. https://www.cas.cn/syky/202201/t20220104_4820592.shtml.

40
蔡其敏. 全超导托卡马克EAST装置实现亿度千秒高约束模等离子体运行[EB/OL]. (2025−01−24) [2025−05−12]. http://www.ipp.cas.cn/xwdt/ttxw/202501/t20250120_410191.html.

41
Han H , Park S J , Sung C , et al. A sustained high−temperature fusion plasma regime facilitated by fast ions[J]. Nature, 2022, 609 (7926): 269- 275.

DOI

42
Ko W H , Yoon S W , Kim W C , et al. Overview of the KSTAR experiments toward fusion reactor[J]. Nuclear Fusion, 2024, 64 (11): 112010.

DOI

43
可控核聚变. 解锁全球最大在运托卡马克装置−JT−60SA [EB/OL]. (2024−06−13) [2025−05−12]. https://www.nuclear-fusion.com.cn/blog/jt-60sa.

44
Tomarchio V , Barabaschi P , Pietro E D , et al. Status of the JT−60SA project: An overview on fabrication, assembly and future exploitation[J]. Fusion Engineering and Design, 2017, 123: 3- 10.

DOI

45
Kamada Y. ITER overview[R]. Saint−Paul−lès−Durance: ITER Organization, 2024.

46
Alex M. ITER, an introduction[Z]. Saint−Paul−lès−Durance: ITER Organization, ITER Lectures, 2018.

47
Loarte A , Pitts R A , Wauters T , et al. The new ITER baseline, research plan and open R&D issues[J]. Plasma Physics and Controlled Fusion, 2025, 67: 065023.

DOI

48
Golfinopoulos T, Michael P C, Ihloff E, et al. Building the runway: A new superconducting magnet test facility made for the SPARC toroidal field model coil[J]. IEEE Transactions on Applied Superconductivity, 34(2): 1−16.

49
MIT, PSFC, CFS. Fusion energy: The high−field path to fusion energy, SPARC[R]. MIT, PSFC, CFS, 2024.

50
Creely A J , Greenwald M J , Ballinger S B , et al. Overview of the SPARC tokamak[J]. Journal of Plasma Physics, 2020, 86 (5): 865860502.

DOI

51
Abdou M. Overview of the tritium fuel cycle and conditions for tritium fuel self−sufficiency and other tritium issues [C]//4th IAEA DEMO Programme Workshop November 15th−18th. Karlsruhe, 2016.

52
Wurzel S E , Hsu S C . Progress toward fusion energy breakeven and gain as measured against the Lawson criterion[J]. Physics of Plasmas, 2022, 29 (6): 062103.

DOI

53
International energy agency. World energy outlook 2023[R]. International energy agency, 2023.

54
Fusion industry association. The global fusion industry in 2024, Fusion companies survey by the fusion industry association[R]. Fusion industry association, 2024.

文章导航

/