特色专题

环状适配体的合成、功能与应用

  • 姚丽丽 ,
  • 刘涛 ,
  • 毛瑜 , * ,
  • 郑磊 , *
展开
  • 合肥工业大学食品与生物工程学院, 合肥 230009
毛瑜(共同通信作者),副研究员,研究方向为功能核酸的体外筛选及其在生物医学与食品安全检测中的应用,电子信箱:
郑磊(通信作者),教授,研究方向为食品营养与安全以及物质科学与生命科学,电子信箱:

姚丽丽,博士研究生,研究方向为环状适配体的体外筛选及其在食品安全中的应用,电子信箱:

收稿日期: 2025-04-14

  网络出版日期: 2025-07-03

基金资助

国家自然科学基金区域创新发展联合基金重点项目(U23A20265)

版权

版权所有,未经授权,不得转载。

Synthesis, functions and applications of circular aptamers

  • Lili YAO ,
  • Tao LIU ,
  • Yu MAO , * ,
  • Lei ZHENG , *
Expand
  • School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China

Received date: 2025-04-14

  Online published: 2025-07-03

Copyright

All rights reserved. Unauthorized reproduction is prohibited.

摘要

环状适配体作为一类具有闭合环状拓扑结构的核酸分子,凭借其独特的核酸外切酶抗性、优异的热力学稳定性及与滚环扩增技术的高度兼容性,已成为食品安全、环境监测及疾病诊断领域的优良分子识别探针。系统阐释了环状适配体的合成方法、高效筛选策略、结构与功能理性设计、滚环扩增驱动超灵敏检测与多价探针应用,并对环状适配体的大规模高效合成技术、人工智能辅助结构设计以及面向复杂生物基质互作解析的动态筛选模型开发的未来发展趋势进行了展望。

本文引用格式

姚丽丽 , 刘涛 , 毛瑜 , 郑磊 . 环状适配体的合成、功能与应用[J]. 科技导报, 2025 , 43(12) : 138 -152 . DOI: 10.3981/j.issn.1000-7857.2025.04.00062

1
Ellington A D, Szostak J W. In vitro selection of RNA molecules that bind specific ligands[J]. Nature, 1990, 346(6287): 818.

DOI

2
Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase[J]. Science, 1990, 249(4968): 505.

DOI

3
DeRosa M C, Lin A, Mallikaratchy P. In vitro selection of aptamers and their applications[J]. Nature Reviews Methods Primers, 2023, 3: 55.

DOI

4
Osborne S E, Ellington A D. Nucleic acid selection and the challenge of combinatorial chemistry[J]. Chemical Reviews, 1997, 97(2): 349.

DOI

5
Eaton B E, Gold L, Zichi D A. Let's get specific: The relationship between specificity and affinity[J]. Chemistry & Biology, 1995, 2(10): 633.

6
刘欢, 汪恩婷, 陈玉皎. 核酸适配体电化学传感技术在食品安全中的应用[J]. 食品安全导刊, 2025(6): 173.

7
贾超凡, 张凤娇, 张璟. 核酸适配体生物传感器用于肝癌早期诊断的研究进展[J]. 化学研究与应用, 2024, 36(9): 1968.

8
Di Giusto D A, King G C. Construction, stability, and activity of multivalent circular anticoagulant aptamers[J]. Journal of Biological Chemistry, 2004, 279(45): 46483.

DOI

9
Conn V M, Chinnaiyan A M, Conn S J. Circular RNA in cancer[J]. Nature Reviews Cancer, 2024, 24(9): 597.

DOI

10
Dong H, Han L, Wu Z. Biostable aptamer rings conjugated for targeting two biomarkers on circulating tumor cells in vivo with great precision[J]. Chemistry of Materials, 2017, 29(24): 10312.

DOI

11
Kuai H, Zhao Z, Mo L. Circular bivalent aptamers enable in vivo stability and recognition[J]. Journal of the American Chemical Society, 2017, 139(27): 9128.

DOI

12
Wang J, Zhou Y, Sun L. Binding-site directed selection and large-scale click-synthesis of a coagulation factor XIa- inhibiting circular DNA aptamer[J]. Chemistry–A European Journal, 2025, 31(16): e202404372.

DOI

13
Liu P, Yin Q, Chang D. In vitro selection of circular DNA aptamers for biosensing applications[J]. Angewandte Chemie International Edition, 2019, 58(24): 8013.

DOI

14
Mao Y, Gu J, Chang D. Evolution of a highly functional circular DNA aptamer in serum[J]. Nucleic Acids Research, 2020, 48(19): 10680.

DOI

15
Yao L, Wang L, Liu S. Evolution of a bispecific G-quadruplex-forming circular aptamer to block IL-6/sIL-6R interaction for inflammation inhibition[J]. Chemical Science, 2024, 15(32): 13011.

DOI

16
Zhou Y, Yao L, Qu H. Direct evolution of matrix-resistant circular bivalent DNA aptamers for Ara h1[J]. Analytical Chemistry, 2025, 97(11): 6277.

DOI

17
Yao L, Liu T, Sun L. Selection of high-affinity and selectivity AFB1 circular aptamer for biosensor application[J]. Journal of Agricultural and Food Chemistry, 2025, 73(5): 3222.

DOI

18
Yao L, Feng J, Zhou Y. Single-round circular aptamer discovery using bioinspired magnetosome-like magnetic chain cross-linked graphene oxide[J]. Research, 2024, 7: 0372.

DOI

19
朱文轩, 吴成秋, 赵树华. 环状寡核苷酸的合成及应用研究进展[J]. 药学进展, 2024, 48(8): 592.

20
Yang L, Abudureheman T, Zheng W. A novel His-tag- binding aptamer for recombinant protein detection and T cell-based immunotherapy[J]. Talanta, 2023, 263: 124722.

DOI

21
Paluzzi V E, Zhang C, Mao C. Near-quantitative preparation of short single-stranded DNA circles[J]. Angewandte Chemie International Edition, 2023, 62(16): e202218443.

DOI

22
Cui Y, Han X, An R. Terminal hairpin in oligonucleotide dominantly prioritizes intramolecular cyclization by T4 ligase over intermolecular polymerization: An exclusive methodology for producing ssDNA rings[J]. Nucleic Acids Research, 2018, 46(22): e132.

23
Li Q, Zhang S, Li W. Programming CircLigase catalysis for DNA rings and topologies[J]. Analytical Chemistry, 2021, 93(3): 1801.

DOI

24
Yan Y, Chang D, Xu Y. Engineering a ligase binding DNA aptamer into a templating DNA scaffold to guide the selective synthesis of circular DNAzymes and DNA aptamers[J]. Journal of the American Chemical Society, 2023, 145(4): 2630.

DOI

25
An R, Li Q, Fan Y. Highly efficient preparation of single-stranded DNA rings by T4 ligase at abnormally low Mg(Ⅱ) concentration[J]. Nucleic Acids Research, 2017, 45(15): e139.

DOI

26
Gubu A, Wang J, Jin H. Synthesis and "DNA interlocks" formation of small circular oligodeoxynucleotides[J]. ACS Applied Materials & Interfaces, 2020, 12(11): 12584.

27
Onizuka K, Nagatsugi F, Ito Y. Automatic pseudorotaxane formation targeting on nucleic acids using a pair of reactive oligodeoxynucleotides[J]. Journal of the American Chemical Society, 2014, 136(20): 7201.

DOI

28
Wang Y, Yang G, Zhang X. Antitumor effect of anti-c-myc aptamer-based PROTAC for degradation of the c-myc protein[J]. Advanced Science, 2024, 11(26): 2309639.

DOI

29
Liu R, Zhang F, Sang Y. Screening, identification, and application of nucleic acid aptamers applied in food safety biosensing[J]. Trends in Food Science & Technology, 2022, 123: 355.

30
Schmidt K S, Borkowski S, Kurreck J. Application of locked nucleic acids to improve aptamer in vivo stability and targeting function[J]. Nucleic Acids Research, 2004, 32(19): 5757.

DOI

31
Monsur Ali M, Li F, Zhang Z. Rolling circle amplification: A versatile tool for chemical biology, materials science and medicine[J]. Chemical Society Reviews, 2014, 43(10): 3324.

DOI

32
Fang P, Qu H, Mao Y. Aptamers for mycotoxin recognition in food: Recent advances and future considerations[J]. Advanced Agrochem, 2023, 2(3): 213.

DOI

33
Hu Y, Jiang G, Wen Y. Selection of aptamers targeting small molecules by capillary electrophoresis: Advances, challenges, and prospects[J]. Biotechnology Advances, 2025, 78: 108491.

DOI

34
Manea I, Casian M, Hosu-Stancioiu O. A review on magnetic beads-based SELEX technologies: Applications from small to large target molecules[J]. Analytica Chimica Acta, 2024, 1297: 342325.

DOI

35
Stoltenburg R, Nikolaus N, Strehlitz B. Capture-SELEX: Selection of DNA aptamers for aminoglycoside antibiotics[J]. Journal of Analytical Methods in Chemistry, 2012, 2012(1): 415697.

36
Wei X, Ma P, Imran Mahmood K. Screening of a high-affinity aptamer for aflatoxin M1 and development of its colorimetric aptasensor[J]. Journal of Agricultural and Food Chemistry, 2023, 71(19): 7546.

DOI

37
Qu H, Wang L, Liu J. Direct screening for cytometric bead assays for adenosine triphosphate[J]. ACS Sensors, 2018, 3(10): 2071.

DOI

38
Zhu Z, Song Y, Li C. Monoclonal surface display SELEX for simple, rapid, efficient, and cost-effective aptamer enrichment and identification[J]. Analytical Chemistry, 2014, 86(12): 5881.

DOI

39
Wang J, Gong Q, Maheshwari N. Particle display: A quantitative screening method for generating high-affinity aptamers[J]. Angewandte Chemie International Edition, 2014, 53(19): 4796.

DOI

40
Berezovski M, Drabovich A, Krylova S M. Nonequilibrium capillary electrophoresis of equilibrium mixtures: A universal tool for development of aptamers[J]. Journal of the American Chemical Society, 2005, 127(9): 3165.

DOI

41
Le A T H, Krylova D S M, Kanoatov D M. Ideal-filter capillary electrophoresis (IFCE) facilitates the one-step selection of aptamers[J]. Angewandte Chemie International Edition, 2019, 58(9): 2739.

DOI

42
Lou X, Qian J, Xiao Y. Micromagnetic selection of aptamers in microfluidic channels[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(9): 2989.

43
Saito P S, Sakamoto T, Tanaka N. Single-round DNA aptamer selection by combined use of capillary electrophoresis and next generation sequencing: An aptaomics approach for identifying unique functional protein-binding DNA aptamers[J]. Chemistry–A European Journal, 2021, 27(39): 10058.

DOI

44
Bawazer L A, Newman A M, Gu Q. Efficient selection of biomineralizing DNA aptamers using deep sequencing and population clustering[J]. ACS Nano, 2014, 8(1): 387.

DOI

45
Wu X, Liu Y, Zhang D. Efficient strategy to discover DNA aptamers against low abundance cell surface proteins in scarce samples[J]. Journal of the American Chemical Society, 2024, 146(39): 26667.

DOI

46
Singh N K, Wang Y, Wen C. High-affinity one-step aptamer selection using a non-fouling porous hydrogel[J]. Nature Biotechnology, 2024, 42(8): 1224.

DOI

47
Zhang X, Zhao Z, Wang X. A versatile strategy for convenient circular bivalent functional nucleic acids construction[J]. National Science Review, 2022, 10(2): nwac107.

48
Pan X, Yang Y, Li L. A bispecific circular aptamer tethering a built-in universal molecular tag for functional protein delivery[J]. Chemical Science, 2020, 11(35): 9648.

DOI

49
Jiang Y, Pan X, Chang J. Supramolecularly engineered circular bivalent aptamer for enhanced functional protein delivery[J]. Journal of the American Chemical Society, 2018, 140(22): 6780.

DOI

50
Yang Y, Sun X, Xu J. Circular bispecific aptamer-mediated artificial intercellular recognition for targeted T cell immunotherapy[J]. ACS Nano, 2020, 14(8): 9562.

DOI

51
Li X, Yang Y, Zhao H. Enhanced in vivo blood-brain barrier penetration by circular tau-transferrin receptor bifunctional aptamer for tauopathy therapy[J]. Journal of the American Chemical Society, 2020, 142(8): 3862.

DOI

52
Sun W, Zhang H, Xie W. Development of integrin-facilitated bispecific aptamer chimeras for membrane protein degradation[J]. Journal of the American Chemical Society, 2024, 146(37): 25490.

DOI

53
Chen J, Chi H, Wang C. Programmable circular multispecific aptamer-drug engager to broadly boost antitumor immunity[J]. Journal of the American Chemical Society, 2024, 146(50): 34311.

DOI

54
Litke J L, Jaffrey S R. Highly efficient expression of circular RNA aptamers in cells using autocatalytic transcripts[J]. Nature Biotechnology, 2019, 37(6): 667.

DOI

55
Guo S, Liu C, Xu Y. Therapeutic application of circular RNA aptamers in a mouse model of psoriasis[J]. Nature Biotechnology, 2025, 43(2): 236.

DOI

56
Zhang J, Zhao F. Circular RNA discovery with emerging sequencing and deep learning technologies[J]. Nature Genetics, 2025, 57: 1089.

DOI

57
Qu H, Ma Q, Wang L. Measuring aptamer folding energy using a molecular clamp[J]. Journal of the American Chemical Society, 2020, 142(27): 11743.

DOI

58
Qu D, Zheng M, Ma Q. Allosteric regulation of aptamer affinity through mechano-chemical coupling[J]. Angewandte Chemie International Edition, 2023, 62(10): e202214045.

DOI

59
Liu J, Zheng M, Wang L. Adaptive detection of ochratoxin a with extended dynamic range by molecular-clamp modulated aptamer fluorescent probes[J]. Microchemical Journal, 2024, 199: 110257.

DOI

60
Mohsen M G, Kool E T. The discovery of rolling circle amplification and rolling circle transcription[J]. Accounts of Chemical Research, 2016, 49(11): 2540.

DOI

61
郭雨湄, 贾振军, 刘瑞. 核酸等温扩增方法在食品安全检测中的应用综述[J]. 食品与发酵工业, 2025, 51(11): 435- 448.

62
Zhang L, Bai H, Zou J. Immuno-rolling circle amplification (immuno-RCA): Biosensing strategies, practical applications, and future perspectives[J]. Advanced Healthcare Materials, 2024, 13(32): e2402337.

DOI

63
Liu J, Xie G, Lv S. Recent applications of rolling circle amplification in biosensors and DNA nanotechnology[J]. TrAC Trends in Analytical Chemistry, 2023, 160: 116953.

DOI

64
张如燕, 张子辰, 张国栋, 等. 基于滚环扩增的核酸载体靶向递送化疗药物的研究[J/OL]. 中国药科大学学报, (2025-03-21)[2025-05-01]. http://kns.cnki.net/kcms/detail/32.1157.R.20250321.1354.002.html.

65
Di Giusto D A, Wlassoff W A, Gooding J J. Proximity extension of circular DNA aptamers with real-time protein detection[J]. Nucleic Acids Research, 2005, 33(6): e64.

DOI

66
Yang L, Fung C, Cho E J. Real-time rolling circle amplification for protein detection[J]. Analytical Chemistry, 2007, 79(9): 3320.

DOI

67
Wang L, Tram K, Ali D M M. Arrest of rolling circle amplification by protein-binding DNA aptamers[J]. Chemistry–A European Journal, 2014, 20(9): 2420.

DOI

68
Wang S, Bi S, Wang Z. A plasmonic aptasensor for ultrasensitive detection of thrombin via arrested rolling circle amplification[J]. Chemical Communications, 2015, 51(37): 7927.

DOI

69
Xu T, Zhang C, Xia K. Small DNAs that bind nickel(Ⅱ) specifically and tightly[J]. Analytical Chemistry, 2021, 93(45): 14912.

DOI

70
Cheglakov Z, Weizmann Y, Dr A B. Increasing the complexity of periodic protein nanostructures by the rolling-circle-amplified synthesis of aptamers[J]. Angewandte Chemie International Edition, 2008, 47(1): 126.

DOI

71
Zhao W, Cui C, Bose S M. Bioinspired multivalent DNA network for capture and release of cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(48): 19626.

72
Chen Y, Tyagi D, Lyu M S. Regenerative NanoOctopus based on multivalent-aptamer-functionalized magnetic microparticles for effective cell capture in whole blood[J]. Analytical Chemistry, 2019, 91(6): 4017.

DOI

73
Lee J, Lee Y M, Kim W J. Polymer-DNA molecular net for selective transportation of target biomolecules and inhibition of tumor growth[J]. Chemistry of Materials, 2016, 28(11): 3961.

DOI

74
Zhu G, Hu R, Zhao Z. Noncanonical self-assembly of multi-functional DNA nanoflowers for biomedical applications[J]. Journal of the American Chemical Society, 2013, 135(44): 16438.

DOI

75
Zhang Z, Ali M M, Eckert M A. A polyvalent aptamer system for targeted drug delivery[J]. Biomaterials, 2013, 34(37): 9728.

DOI

76
Kim M G, Park J Y, Miao W J. Polyaptamer DNA nanothread-anchored, reduced graphene oxide nanosheets for targeted delivery[J]. Biomaterials, 2015, 48: 129.

DOI

77
Zhang L, Abdullah R, Hu X. Engineering of bioinspired, size-controllable, self-degradable cancer-targeting DNA nanoflowers via the incorporation of an artificial sandwich base[J]. Journal of the American Chemical Society, 2019, 141(10): 4282.

DOI

78
Song H, Zhang Y, Cheng P. A rapidly self-assembling soft-brush DNA hydrogel based on RCA products[J]. Chemical Communications, 2019, 55(37): 5375.

DOI

79
Zhang R, Lv Z, Chang L. A responsive DNA hydrogel containing poly-aptamers as dual-target inhibitors for localized cancer immunotherapy[J]. Advanced Functional Materials, 2024, 34(32): 2401563.

DOI

文章导航

/