特色专题

环状适配体的合成、功能与应用

  • 姚丽丽 ,
  • 刘涛 ,
  • 毛瑜 ,
  • 郑磊
展开
  • 合肥工业大学食品与生物工程学院, 合肥 230009
姚丽丽,博士研究生,研究方向为环状适配体的体外筛选及其在食品安全中的应用,电子信箱:740894568@qq.com;毛瑜(共同通信作者),副研究员,研究方向为功能核酸的体外筛选及其在生物医学与食品安全检测中的应用,电子信箱:maoyu@hfut.edu.cn;郑磊(通信作者),教授,研究方向为食品营养与安全以及物质科学与生命科学,电子信箱:lzheng@hfut.edu.cn

收稿日期: 2025-04-14

  修回日期: 2025-05-20

  网络出版日期: 2025-07-03

基金资助

国家自然科学基金区域创新发展联合基金重点项目(U23A20265)

Synthesis, functions and applications of circular aptamers

  • YAO Lili ,
  • LIU Tao ,
  • MAO Yu ,
  • ZHENG Lei
Expand
  • School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China

Received date: 2025-04-14

  Revised date: 2025-05-20

  Online published: 2025-07-03

摘要

环状适配体作为一类具有闭合环状拓扑结构的核酸分子,凭借其独特的核酸外切酶抗性、优异的热力学稳定性及与滚环扩增技术的高度兼容性,已成为食品安全、环境监测及疾病诊断领域的优良分子识别探针。系统阐释了环状适配体的合成方法、高效筛选策略、结构与功能理性设计、滚环扩增驱动超灵敏检测与多价探针应用,并对环状适配体的大规模高效合成技术、人工智能辅助结构设计以及面向复杂生物基质互作解析的动态筛选模型开发的未来发展趋势进行了展望。

本文引用格式

姚丽丽 , 刘涛 , 毛瑜 , 郑磊 . 环状适配体的合成、功能与应用[J]. 科技导报, 2025 , 43(12) : 138 -152 . DOI: 10.3981/j.issn.1000-7857.2025.04.00062

Abstract

Circular aptamers, as a class of nucleic acid molecules with closed-loop topological structures, have emerged as superior molecular recognition probes in fields such as food safety, environmental monitoring and disease diagnostics owing to their intrinsic exonuclease resistance, superior thermodynamic stability, and excellent compatibility with rolling circle amplification techniques. This article systematically reviews the synthesis methods, high-efficiency selection strategies, structure-function rational design, rolling circle amplification-driven ultrasensitive detection, and multivalent probe applications of circular aptamers. Furthermore, it provides insights into future directions, including large-scale efficient synthesis techniques, artificial intelligence-assisted structural design, and the development of dynamic selection models for analyzing interactions in complex biological matrices.

参考文献

[1] Ellington A D, Szostak J W. In vitro selection of RNA molecules that bind specific ligands[J]. Nature, 1990, 346(6287): 818.
[2] Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase[J]. Science, 1990, 249(4968): 505.
[3] DeRosa M C, Lin A, Mallikaratchy P. In vitro selection of aptamers and their applications[J]. Nature Reviews Methods Primers, 2023, 3: 55.
[4] Osborne S E, Ellington A D. Nucleic acid selection and the challenge of combinatorial chemistry[J]. Chemical Reviews, 1997, 97(2): 349.
[5] Eaton B E, Gold L, Zichi D A. Let's get specific: The relationship between specificity and affinity[J]. Chemistry & Biology, 1995, 2(10): 633.
[6] 刘欢, 汪恩婷, 陈玉皎. 核酸适配体电化学传感技术在食品安全中的应用[J]. 食品安全导刊, 2025(6): 173.
[7] 贾超凡, 张凤娇, 张璟. 核酸适配体生物传感器用于肝癌早期诊断的研究进展[J]. 化学研究与应用, 2024, 36(9): 1968.
[8] Di Giusto D A, King G C. Construction, stability, and activity of multivalent circular anticoagulant aptamers[J]. Journal of Biological Chemistry, 2004, 279(45): 46483.
[9] Conn V M, Chinnaiyan A M, Conn S J. Circular RNA in cancer[J]. Nature Reviews Cancer, 2024, 24(9): 597.
[10] Dong H, Han L, Wu Z. Biostable aptamer rings conjugated for targeting two biomarkers on circulating tumor cells in vivo with great precision[J]. Chemistry of Materials, 2017, 29(24): 10312.
[11] Kuai H, Zhao Z, Mo L. Circular bivalent aptamers enable in vivo stability and recognition[J]. Journal of the American Chemical Society, 2017, 139(27): 9128.
[12] Wang J, Zhou Y, Sun L. Binding-site directed selection and large-scale click-synthesis of a coagulation factor XIa- inhibiting circular DNA aptamer[J]. Chemistry–A European Journal, 2025, 31(16): e202404372.
[13] Liu P, Yin Q, Chang D. In vitro selection of circular DNA aptamers for biosensing applications[J]. Angewandte Chemie International Edition, 2019, 58(24): 8013.
[14] Mao Y, Gu J, Chang D. Evolution of a highly functional circular DNA aptamer in serum[J]. Nucleic Acids Research, 2020, 48(19): 10680.
[15] Yao L, Wang L, Liu S. Evolution of a bispecific G-quadruplex-forming circular aptamer to block IL-6/sIL-6R interaction for inflammation inhibition[J]. Chemical Science, 2024, 15(32): 13011.
[16] Zhou Y, Yao L, Qu H. Direct evolution of matrix-resistant circular bivalent DNA aptamers for Ara h1[J]. Analytical Chemistry, 2025, 97(11): 6277.
[17] Yao L, Liu T, Sun L. Selection of high-affinity and selectivity AFB1 circular aptamer for biosensor application[J]. Journal of Agricultural and Food Chemistry, 2025, 73(5): 3222.
[18] Yao L, Feng J, Zhou Y. Single-round circular aptamer discovery using bioinspired magnetosome-like magnetic chain cross-linked graphene oxide[J]. Research, 2024, 7: 0372.
[19] 朱文轩, 吴成秋, 赵树华. 环状寡核苷酸的合成及应用研究进展[J]. 药学进展, 2024, 48(8): 592.
[20] Yang L, Abudureheman T, Zheng W. A novel His-tag- binding aptamer for recombinant protein detection and T cell-based immunotherapy[J]. Talanta, 2023, 263: 124722.
[21] Paluzzi V E, Zhang C, Mao C. Near-quantitative preparation of short single-stranded DNA circles[J]. Angewandte Chemie International Edition, 2023, 62(16): e202218443.
[22] Cui Y, Han X, An R. Terminal hairpin in oligonucleotide dominantly prioritizes intramolecular cyclization by T4 ligase over intermolecular polymerization: An exclusive methodology for producing ssDNA rings[J]. Nucleic Acids Research, 2018, 46(22): e132.
[23] Li Q, Zhang S, Li W. Programming CircLigase catalysis for DNA rings and topologies[J]. Analytical Chemistry, 2021, 93(3): 1801.
[24] Yan Y, Chang D, Xu Y. Engineering a ligase binding DNA aptamer into a templating DNA scaffold to guide the selective synthesis of circular DNAzymes and DNA aptamers[J]. Journal of the American Chemical Society, 2023, 145(4): 2630.
[25] An R, Li Q, Fan Y. Highly efficient preparation of single-stranded DNA rings by T4 ligase at abnormally low Mg(II) concentration[J]. Nucleic Acids Research, 2017, 45(15): e139.
[26] Gubu A, Wang J, Jin H. Synthesis and "DNA interlocks" formation of small circular oligodeoxynucleotides[J]. ACS Applied Materials & Interfaces, 2020, 12(11): 12584.
[27] Onizuka K, Nagatsugi F, Ito Y. Automatic pseudorotaxane formation targeting on nucleic acids using a pair of reactive oligodeoxynucleotides[J]. Journal of the American Chemical Society, 2014, 136(20): 7201.
[28] Wang Y, Yang G, Zhang X. Antitumor effect of anti-c-myc aptamer-based PROTAC for degradation of the c-myc protein[J]. Advanced Science, 2024, 11(26): 2309639.
[29] Liu R, Zhang F, Sang Y. Screening, identification, and application of nucleic acid aptamers applied in food safety biosensing[J]. Trends in Food Science & Technology, 2022, 123: 355.
[30] Schmidt K S, Borkowski S, Kurreck J. Application of locked nucleic acids to improve aptamer in vivo stability and targeting function[J]. Nucleic Acids Research, 2004, 32(19): 5757.
[31] Monsur Ali M, Li F, Zhang Z. Rolling circle amplification: A versatile tool for chemical biology, materials science and medicine[J]. Chemical Society Reviews, 2014, 43(10): 3324.
[32] Fang P, Qu H, Mao Y. Aptamers for mycotoxin recognition in food: Recent advances and future considerations[J]. Advanced Agrochem, 2023, 2(3): 213.
[33] Hu Y, Jiang G, Wen Y. Selection of aptamers targeting small molecules by capillary electrophoresis: Advances, challenges, and prospects[J]. Biotechnology Advances, 2025, 78: 108491.
[34] Manea I, Casian M, Hosu-Stancioiu O. A review on magnetic beads-based SELEX technologies: Applications from small to large target molecules[J]. Analytica Chimica Acta, 2024, 1297: 342325.
[35] Stoltenburg R, Nikolaus N, Strehlitz B. Capture-SELEX: Selection of DNA aptamers for aminoglycoside antibiotics[J]. Journal of Analytical Methods in Chemistry, 2012, 2012(1): 415697.
[36] Wei X, Ma P, Imran Mahmood K. Screening of a high-affinity aptamer for aflatoxin M1 and development of its colorimetric aptasensor[J]. Journal of Agricultural and Food Chemistry, 2023, 71(19): 7546.
[37] Qu H, Wang L, Liu J. Direct screening for cytometric bead assays for adenosine triphosphate[J]. ACS Sensors, 2018, 3(10): 2071.
[38] Zhu Z, Song Y, Li C. Monoclonal surface display SELEX for simple, rapid, efficient, and cost-effective aptamer enrichment and identification[J]. Analytical Chemistry, 2014, 86(12): 5881.
[39] Wang J, Gong Q, Maheshwari N. Particle display: A quantitative screening method for generating high-affinity aptamers[J]. Angewandte Chemie International Edition, 2014, 53(19): 4796.
[40] Berezovski M, Drabovich A, Krylova S M. Nonequilibrium capillary electrophoresis of equilibrium mixtures: A universal tool for development of aptamers[J]. Journal of the American Chemical Society, 2005, 127(9): 3165.
[41] Le A T H, Krylova D S M, Kanoatov D M. Ideal-filter capillary electrophoresis (IFCE) facilitates the one-step selection of aptamers[J]. Angewandte Chemie International Edition, 2019, 58(9): 2739.
[42] Lou X, Qian J, Xiao Y. Micromagnetic selection of aptamers in microfluidic channels[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(9): 2989.
[43] Saito P S, Sakamoto T, Tanaka N. Single-round DNA aptamer selection by combined use of capillary electrophoresis and next generation sequencing: An aptaomics approach for identifying unique functional protein-binding DNA aptamers[J]. Chemistry–A European Journal, 2021, 27(39): 10058.
[44] Bawazer L A, Newman A M, Gu Q. Efficient selection of biomineralizing DNA aptamers using deep sequencing and population clustering[J]. ACS Nano, 2014, 8(1): 387.
[45] Wu X, Liu Y, Zhang D. Efficient strategy to discover DNA aptamers against low abundance cell surface proteins in scarce samples[J]. Journal of the American Chemical Society, 2024, 146(39): 26667.
[46] Singh N K, Wang Y, Wen C. High-affinity one-step aptamer selection using a non-fouling porous hydrogel[J]. Nature Biotechnology, 2024, 42(8): 1224.
[47] Zhang X, Zhao Z, Wang X. A versatile strategy for convenient circular bivalent functional nucleic acids construction[J]. National Science Review, 2022, 10(2): nwac107.
[48] Pan X, Yang Y, Li L. A bispecific circular aptamer tethering a built-in universal molecular tag for functional protein delivery[J]. Chemical Science, 2020, 11(35): 9648.
[49] Jiang Y, Pan X, Chang J. Supramolecularly engineered circular bivalent aptamer for enhanced functional protein delivery[J]. Journal of the American Chemical Society, 2018, 140(22): 6780.
[50] Yang Y, Sun X, Xu J. Circular bispecific aptamer-mediated artificial intercellular recognition for targeted T cell immunotherapy[J]. ACS Nano, 2020, 14(8): 9562.
[51] Li X, Yang Y, Zhao H. Enhanced in vivo blood-brain barrier penetration by circular tau-transferrin receptor bifunctional aptamer for tauopathy therapy[J]. Journal of the American Chemical Society, 2020, 142(8): 3862.
[52] Sun W, Zhang H, Xie W. Development of integrin-facilitated bispecific aptamer chimeras for membrane protein degradation[J]. Journal of the American Chemical Society, 2024, 146(37): 25490.
[53] Chen J, Chi H, Wang C. Programmable circular multispecific aptamer-drug engager to broadly boost antitumor immunity[J]. Journal of the American Chemical Society, 2024, 146(50): 34311.
[54] Litke J L, Jaffrey S R. Highly efficient expression of circular RNA aptamers in cells using autocatalytic transcripts[J]. Nature Biotechnology, 2019, 37(6): 667.
[55] Guo S, Liu C, Xu Y. Therapeutic application of circular RNA aptamers in a mouse model of psoriasis[J]. Nature Biotechnology, 2025, 43(2): 236.
[56] Zhang J, Zhao F. Circular RNA discovery with emerging sequencing and deep learning technologies[J]. Nature Genetics, 2025, 57: 1089.
[57] Qu H, Ma Q, Wang L. Measuring aptamer folding energy using a molecular clamp[J]. Journal of the American Chemical Society, 2020, 142(27): 11743.
[58] Qu D, Zheng M, Ma Q. Allosteric regulation of aptamer affinity through mechano-chemical coupling[J]. Angewandte Chemie International Edition, 2023, 62(10): e202214045.
[59] Liu J, Zheng M, Wang L. Adaptive detection of ochratoxin a with extended dynamic range by molecular-clamp modulated aptamer fluorescent probes[J]. Microchemical Journal, 2024, 199: 110257.
[60] Mohsen M G, Kool E T. The discovery of rolling circle amplification and rolling circle transcription[J]. Accounts of Chemical Research, 2016, 49(11): 2540.
[61] 郭雨湄, 贾振军, 刘瑞. 核酸等温扩增方法在食品安全检测中的应用综述[J]. 食品与发酵工业, 2025, 51(11): 435-448.
[62] Zhang L, Bai H, Zou J. Immuno-rolling circle amplification (immuno-RCA): Biosensing strategies, practical applications, and future perspectives[J]. Advanced Healthcare Materials, 2024, 13(32): e2402337.
[63] Liu J, Xie G, Lv S. Recent applications of rolling circle amplification in biosensors and DNA nanotechnology[J]. TrAC Trends in Analytical Chemistry, 2023, 160: 116953.
[64] 张如燕, 张子辰, 张国栋, 等. 基于滚环扩增的核酸载体靶向递送化疗药物的研究[J/OL]. 中国药科大学学报, (2025-03-21)[2025-05-01]. http://kns.cnki.net/kcms/detail/32.1157.R.20250321.1354.002.html.
[65] Di Giusto D A, Wlassoff W A, Gooding J J. Proximity extension of circular DNA aptamers with real-time protein detection[J]. Nucleic Acids Research, 2005, 33(6): e64.
[66] Yang L, Fung C, Cho E J. Real-time rolling circle amplification for protein detection[J]. Analytical Chemistry, 2007, 79(9): 3320.
[67] Wang L, Tram K, Ali D M M. Arrest of rolling circle amplification by protein-binding DNA aptamers[J]. Chemistry–A European Journal, 2014, 20(9): 2420.
[68] Wang S, Bi S, Wang Z. A plasmonic aptasensor for ultrasensitive detection of thrombin via arrested rolling circle amplification[J]. Chemical Communications, 2015, 51(37): 7927.
[69] Xu T, Zhang C, Xia K. Small DNAs that bind nickel(II) specifically and tightly[J]. Analytical Chemistry, 2021, 93(45): 14912.
[70] Cheglakov Z, Weizmann Y, Dr A B. Increasing the complexity of periodic protein nanostructures by the rolling-circle-amplified synthesis of aptamers[J]. Angewandte Chemie International Edition, 2008, 47(1): 126.
[71] Zhao W, Cui C, Bose S M. Bioinspired multivalent DNA network for capture and release of cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(48): 19626.
[72] Chen Y, Tyagi D, Lyu M S. Regenerative NanoOctopus based on multivalent-aptamer-functionalized magnetic microparticles for effective cell capture in whole blood[J]. Analytical Chemistry, 2019, 91(6): 4017.
[73] Lee J, Lee Y M, Kim W J. Polymer-DNA molecular net for selective transportation of target biomolecules and inhibition of tumor growth[J]. Chemistry of Materials, 2016, 28(11): 3961.
[74] Zhu G, Hu R, Zhao Z. Noncanonical self-assembly of multi-functional DNA nanoflowers for biomedical applications[J]. Journal of the American Chemical Society, 2013, 135(44): 16438.
[75] Zhang Z, Ali M M, Eckert M A. A polyvalent aptamer system for targeted drug delivery[J]. Biomaterials, 2013, 34(37): 9728.
[76] Kim M G, Park J Y, Miao W J. Polyaptamer DNA nanothread-anchored, reduced graphene oxide nanosheets for targeted delivery[J]. Biomaterials, 2015, 48: 129.
[77] Zhang L, Abdullah R, Hu X. Engineering of bioinspired, size-controllable, self-degradable cancer-targeting DNA nanoflowers via the incorporation of an artificial sandwich base[J]. Journal of the American Chemical Society, 2019, 141(10): 4282.
[78] Song H, Zhang Y, Cheng P. A rapidly self-assembling soft-brush DNA hydrogel based on RCA products[J]. Chemical Communications, 2019, 55(37): 5375.
[79] Zhang R, Lv Z, Chang L. A responsive DNA hydrogel containing poly-aptamers as dual-target inhibitors for localized cancer immunotherapy[J]. Advanced Functional Materials, 2024, 34(32): 2401563.
文章导航

/