[1] Ellington A D, Szostak J W. In vitro selection of RNA molecules that bind specific ligands[J]. Nature, 1990, 346(6287): 818.
[2] Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase[J]. Science, 1990, 249(4968): 505.
[3] DeRosa M C, Lin A, Mallikaratchy P. In vitro selection of aptamers and their applications[J]. Nature Reviews Methods Primers, 2023, 3: 55.
[4] Osborne S E, Ellington A D. Nucleic acid selection and the challenge of combinatorial chemistry[J]. Chemical Reviews, 1997, 97(2): 349.
[5] Eaton B E, Gold L, Zichi D A. Let's get specific: The relationship between specificity and affinity[J]. Chemistry & Biology, 1995, 2(10): 633.
[6] 刘欢, 汪恩婷, 陈玉皎. 核酸适配体电化学传感技术在食品安全中的应用[J]. 食品安全导刊, 2025(6): 173.
[7] 贾超凡, 张凤娇, 张璟. 核酸适配体生物传感器用于肝癌早期诊断的研究进展[J]. 化学研究与应用, 2024, 36(9): 1968.
[8] Di Giusto D A, King G C. Construction, stability, and activity of multivalent circular anticoagulant aptamers[J]. Journal of Biological Chemistry, 2004, 279(45): 46483.
[9] Conn V M, Chinnaiyan A M, Conn S J. Circular RNA in cancer[J]. Nature Reviews Cancer, 2024, 24(9): 597.
[10] Dong H, Han L, Wu Z. Biostable aptamer rings conjugated for targeting two biomarkers on circulating tumor cells in vivo with great precision[J]. Chemistry of Materials, 2017, 29(24): 10312.
[11] Kuai H, Zhao Z, Mo L. Circular bivalent aptamers enable in vivo stability and recognition[J]. Journal of the American Chemical Society, 2017, 139(27): 9128.
[12] Wang J, Zhou Y, Sun L. Binding-site directed selection and large-scale click-synthesis of a coagulation factor XIa- inhibiting circular DNA aptamer[J]. Chemistry–A European Journal, 2025, 31(16): e202404372.
[13] Liu P, Yin Q, Chang D. In vitro selection of circular DNA aptamers for biosensing applications[J]. Angewandte Chemie International Edition, 2019, 58(24): 8013.
[14] Mao Y, Gu J, Chang D. Evolution of a highly functional circular DNA aptamer in serum[J]. Nucleic Acids Research, 2020, 48(19): 10680.
[15] Yao L, Wang L, Liu S. Evolution of a bispecific G-quadruplex-forming circular aptamer to block IL-6/sIL-6R interaction for inflammation inhibition[J]. Chemical Science, 2024, 15(32): 13011.
[16] Zhou Y, Yao L, Qu H. Direct evolution of matrix-resistant circular bivalent DNA aptamers for Ara h1[J]. Analytical Chemistry, 2025, 97(11): 6277.
[17] Yao L, Liu T, Sun L. Selection of high-affinity and selectivity AFB1 circular aptamer for biosensor application[J]. Journal of Agricultural and Food Chemistry, 2025, 73(5): 3222.
[18] Yao L, Feng J, Zhou Y. Single-round circular aptamer discovery using bioinspired magnetosome-like magnetic chain cross-linked graphene oxide[J]. Research, 2024, 7: 0372.
[19] 朱文轩, 吴成秋, 赵树华. 环状寡核苷酸的合成及应用研究进展[J]. 药学进展, 2024, 48(8): 592.
[20] Yang L, Abudureheman T, Zheng W. A novel His-tag- binding aptamer for recombinant protein detection and T cell-based immunotherapy[J]. Talanta, 2023, 263: 124722.
[21] Paluzzi V E, Zhang C, Mao C. Near-quantitative preparation of short single-stranded DNA circles[J]. Angewandte Chemie International Edition, 2023, 62(16): e202218443.
[22] Cui Y, Han X, An R. Terminal hairpin in oligonucleotide dominantly prioritizes intramolecular cyclization by T4 ligase over intermolecular polymerization: An exclusive methodology for producing ssDNA rings[J]. Nucleic Acids Research, 2018, 46(22): e132.
[23] Li Q, Zhang S, Li W. Programming CircLigase catalysis for DNA rings and topologies[J]. Analytical Chemistry, 2021, 93(3): 1801.
[24] Yan Y, Chang D, Xu Y. Engineering a ligase binding DNA aptamer into a templating DNA scaffold to guide the selective synthesis of circular DNAzymes and DNA aptamers[J]. Journal of the American Chemical Society, 2023, 145(4): 2630.
[25] An R, Li Q, Fan Y. Highly efficient preparation of single-stranded DNA rings by T4 ligase at abnormally low Mg(II) concentration[J]. Nucleic Acids Research, 2017, 45(15): e139.
[26] Gubu A, Wang J, Jin H. Synthesis and "DNA interlocks" formation of small circular oligodeoxynucleotides[J]. ACS Applied Materials & Interfaces, 2020, 12(11): 12584.
[27] Onizuka K, Nagatsugi F, Ito Y. Automatic pseudorotaxane formation targeting on nucleic acids using a pair of reactive oligodeoxynucleotides[J]. Journal of the American Chemical Society, 2014, 136(20): 7201.
[28] Wang Y, Yang G, Zhang X. Antitumor effect of anti-c-myc aptamer-based PROTAC for degradation of the c-myc protein[J]. Advanced Science, 2024, 11(26): 2309639.
[29] Liu R, Zhang F, Sang Y. Screening, identification, and application of nucleic acid aptamers applied in food safety biosensing[J]. Trends in Food Science & Technology, 2022, 123: 355.
[30] Schmidt K S, Borkowski S, Kurreck J. Application of locked nucleic acids to improve aptamer in vivo stability and targeting function[J]. Nucleic Acids Research, 2004, 32(19): 5757.
[31] Monsur Ali M, Li F, Zhang Z. Rolling circle amplification: A versatile tool for chemical biology, materials science and medicine[J]. Chemical Society Reviews, 2014, 43(10): 3324.
[32] Fang P, Qu H, Mao Y. Aptamers for mycotoxin recognition in food: Recent advances and future considerations[J]. Advanced Agrochem, 2023, 2(3): 213.
[33] Hu Y, Jiang G, Wen Y. Selection of aptamers targeting small molecules by capillary electrophoresis: Advances, challenges, and prospects[J]. Biotechnology Advances, 2025, 78: 108491.
[34] Manea I, Casian M, Hosu-Stancioiu O. A review on magnetic beads-based SELEX technologies: Applications from small to large target molecules[J]. Analytica Chimica Acta, 2024, 1297: 342325.
[35] Stoltenburg R, Nikolaus N, Strehlitz B. Capture-SELEX: Selection of DNA aptamers for aminoglycoside antibiotics[J]. Journal of Analytical Methods in Chemistry, 2012, 2012(1): 415697.
[36] Wei X, Ma P, Imran Mahmood K. Screening of a high-affinity aptamer for aflatoxin M1 and development of its colorimetric aptasensor[J]. Journal of Agricultural and Food Chemistry, 2023, 71(19): 7546.
[37] Qu H, Wang L, Liu J. Direct screening for cytometric bead assays for adenosine triphosphate[J]. ACS Sensors, 2018, 3(10): 2071.
[38] Zhu Z, Song Y, Li C. Monoclonal surface display SELEX for simple, rapid, efficient, and cost-effective aptamer enrichment and identification[J]. Analytical Chemistry, 2014, 86(12): 5881.
[39] Wang J, Gong Q, Maheshwari N. Particle display: A quantitative screening method for generating high-affinity aptamers[J]. Angewandte Chemie International Edition, 2014, 53(19): 4796.
[40] Berezovski M, Drabovich A, Krylova S M. Nonequilibrium capillary electrophoresis of equilibrium mixtures: A universal tool for development of aptamers[J]. Journal of the American Chemical Society, 2005, 127(9): 3165.
[41] Le A T H, Krylova D S M, Kanoatov D M. Ideal-filter capillary electrophoresis (IFCE) facilitates the one-step selection of aptamers[J]. Angewandte Chemie International Edition, 2019, 58(9): 2739.
[42] Lou X, Qian J, Xiao Y. Micromagnetic selection of aptamers in microfluidic channels[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(9): 2989.
[43] Saito P S, Sakamoto T, Tanaka N. Single-round DNA aptamer selection by combined use of capillary electrophoresis and next generation sequencing: An aptaomics approach for identifying unique functional protein-binding DNA aptamers[J]. Chemistry–A European Journal, 2021, 27(39): 10058.
[44] Bawazer L A, Newman A M, Gu Q. Efficient selection of biomineralizing DNA aptamers using deep sequencing and population clustering[J]. ACS Nano, 2014, 8(1): 387.
[45] Wu X, Liu Y, Zhang D. Efficient strategy to discover DNA aptamers against low abundance cell surface proteins in scarce samples[J]. Journal of the American Chemical Society, 2024, 146(39): 26667.
[46] Singh N K, Wang Y, Wen C. High-affinity one-step aptamer selection using a non-fouling porous hydrogel[J]. Nature Biotechnology, 2024, 42(8): 1224.
[47] Zhang X, Zhao Z, Wang X. A versatile strategy for convenient circular bivalent functional nucleic acids construction[J]. National Science Review, 2022, 10(2): nwac107.
[48] Pan X, Yang Y, Li L. A bispecific circular aptamer tethering a built-in universal molecular tag for functional protein delivery[J]. Chemical Science, 2020, 11(35): 9648.
[49] Jiang Y, Pan X, Chang J. Supramolecularly engineered circular bivalent aptamer for enhanced functional protein delivery[J]. Journal of the American Chemical Society, 2018, 140(22): 6780.
[50] Yang Y, Sun X, Xu J. Circular bispecific aptamer-mediated artificial intercellular recognition for targeted T cell immunotherapy[J]. ACS Nano, 2020, 14(8): 9562.
[51] Li X, Yang Y, Zhao H. Enhanced in vivo blood-brain barrier penetration by circular tau-transferrin receptor bifunctional aptamer for tauopathy therapy[J]. Journal of the American Chemical Society, 2020, 142(8): 3862.
[52] Sun W, Zhang H, Xie W. Development of integrin-facilitated bispecific aptamer chimeras for membrane protein degradation[J]. Journal of the American Chemical Society, 2024, 146(37): 25490.
[53] Chen J, Chi H, Wang C. Programmable circular multispecific aptamer-drug engager to broadly boost antitumor immunity[J]. Journal of the American Chemical Society, 2024, 146(50): 34311.
[54] Litke J L, Jaffrey S R. Highly efficient expression of circular RNA aptamers in cells using autocatalytic transcripts[J]. Nature Biotechnology, 2019, 37(6): 667.
[55] Guo S, Liu C, Xu Y. Therapeutic application of circular RNA aptamers in a mouse model of psoriasis[J]. Nature Biotechnology, 2025, 43(2): 236.
[56] Zhang J, Zhao F. Circular RNA discovery with emerging sequencing and deep learning technologies[J]. Nature Genetics, 2025, 57: 1089.
[57] Qu H, Ma Q, Wang L. Measuring aptamer folding energy using a molecular clamp[J]. Journal of the American Chemical Society, 2020, 142(27): 11743.
[58] Qu D, Zheng M, Ma Q. Allosteric regulation of aptamer affinity through mechano-chemical coupling[J]. Angewandte Chemie International Edition, 2023, 62(10): e202214045.
[59] Liu J, Zheng M, Wang L. Adaptive detection of ochratoxin a with extended dynamic range by molecular-clamp modulated aptamer fluorescent probes[J]. Microchemical Journal, 2024, 199: 110257.
[60] Mohsen M G, Kool E T. The discovery of rolling circle amplification and rolling circle transcription[J]. Accounts of Chemical Research, 2016, 49(11): 2540.
[61] 郭雨湄, 贾振军, 刘瑞. 核酸等温扩增方法在食品安全检测中的应用综述[J]. 食品与发酵工业, 2025, 51(11): 435-448.
[62] Zhang L, Bai H, Zou J. Immuno-rolling circle amplification (immuno-RCA): Biosensing strategies, practical applications, and future perspectives[J]. Advanced Healthcare Materials, 2024, 13(32): e2402337.
[63] Liu J, Xie G, Lv S. Recent applications of rolling circle amplification in biosensors and DNA nanotechnology[J]. TrAC Trends in Analytical Chemistry, 2023, 160: 116953.
[64] 张如燕, 张子辰, 张国栋, 等. 基于滚环扩增的核酸载体靶向递送化疗药物的研究[J/OL]. 中国药科大学学报, (2025-03-21)[2025-05-01]. http://kns.cnki.net/kcms/detail/32.1157.R.20250321.1354.002.html.
[65] Di Giusto D A, Wlassoff W A, Gooding J J. Proximity extension of circular DNA aptamers with real-time protein detection[J]. Nucleic Acids Research, 2005, 33(6): e64.
[66] Yang L, Fung C, Cho E J. Real-time rolling circle amplification for protein detection[J]. Analytical Chemistry, 2007, 79(9): 3320.
[67] Wang L, Tram K, Ali D M M. Arrest of rolling circle amplification by protein-binding DNA aptamers[J]. Chemistry–A European Journal, 2014, 20(9): 2420.
[68] Wang S, Bi S, Wang Z. A plasmonic aptasensor for ultrasensitive detection of thrombin via arrested rolling circle amplification[J]. Chemical Communications, 2015, 51(37): 7927.
[69] Xu T, Zhang C, Xia K. Small DNAs that bind nickel(II) specifically and tightly[J]. Analytical Chemistry, 2021, 93(45): 14912.
[70] Cheglakov Z, Weizmann Y, Dr A B. Increasing the complexity of periodic protein nanostructures by the rolling-circle-amplified synthesis of aptamers[J]. Angewandte Chemie International Edition, 2008, 47(1): 126.
[71] Zhao W, Cui C, Bose S M. Bioinspired multivalent DNA network for capture and release of cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(48): 19626.
[72] Chen Y, Tyagi D, Lyu M S. Regenerative NanoOctopus based on multivalent-aptamer-functionalized magnetic microparticles for effective cell capture in whole blood[J]. Analytical Chemistry, 2019, 91(6): 4017.
[73] Lee J, Lee Y M, Kim W J. Polymer-DNA molecular net for selective transportation of target biomolecules and inhibition of tumor growth[J]. Chemistry of Materials, 2016, 28(11): 3961.
[74] Zhu G, Hu R, Zhao Z. Noncanonical self-assembly of multi-functional DNA nanoflowers for biomedical applications[J]. Journal of the American Chemical Society, 2013, 135(44): 16438.
[75] Zhang Z, Ali M M, Eckert M A. A polyvalent aptamer system for targeted drug delivery[J]. Biomaterials, 2013, 34(37): 9728.
[76] Kim M G, Park J Y, Miao W J. Polyaptamer DNA nanothread-anchored, reduced graphene oxide nanosheets for targeted delivery[J]. Biomaterials, 2015, 48: 129.
[77] Zhang L, Abdullah R, Hu X. Engineering of bioinspired, size-controllable, self-degradable cancer-targeting DNA nanoflowers via the incorporation of an artificial sandwich base[J]. Journal of the American Chemical Society, 2019, 141(10): 4282.
[78] Song H, Zhang Y, Cheng P. A rapidly self-assembling soft-brush DNA hydrogel based on RCA products[J]. Chemical Communications, 2019, 55(37): 5375.
[79] Zhang R, Lv Z, Chang L. A responsive DNA hydrogel containing poly-aptamers as dual-target inhibitors for localized cancer immunotherapy[J]. Advanced Functional Materials, 2024, 34(32): 2401563.