研究论文

项链的若干染色问题

  • 卢建立;任凤霞;马美琳
展开
  • 河南师范大学数学与信息科学学院,河南新乡 453007

收稿日期: 2011-12-27

  修回日期: 2012-02-29

  网络出版日期: 2012-03-08

Several Coloring Problems Involving the Necklace

  • LU Jianli;REN Fengxia;MA Meilin
Expand
  • College of Mathematics and Information Science, Henan Normal University, Xinxiang 453007, Henan Province, China

Received date: 2011-12-27

  Revised date: 2012-02-29

  Online published: 2012-03-08

摘要

图的染色问题是图论研究的经典领域,在网络结构和实际生活中都有着广泛的应用。染色问题是近年来图论研究的热点,全染色,特别是邻点可区别全染色又是染色问题中的难点。本文研究了当h≥3 (h能确定项链的顶点个数,Nh中的h表示项链有2h+2个顶点)时,项链的邻点可区别全染色、点边邻点可区别全染色和关联邻点可区别全染色。通过在项链的点边集合与色集合之间构造一种一一对应关系,得到它们的色数分别是5、3、4,同时给出了具体的染色方案。

本文引用格式

卢建立;任凤霞;马美琳 . 项链的若干染色问题[J]. 科技导报, 2012 , 30(7) : 44 -47 . DOI: 10.3981/j.issn.1000-7857.2012.07.007

Abstract

The coloring problem of graph is the classical field of graph theory which is widely used in the network structure and practical life. The coloring problem is becoming a hot topic in recent years. However, the total coloring, especially adjacent vertex-distinguishing total coloring is a difficult point of the coloring problem. For a necklace, the adjacent vertex-distinguishing total coloring, the adjacent vertex-distinguishing vertex edge total coloring, and the incidence adjacent vertex-distinguishing total coloring are discussed when h≥3 (h is able to determine the number of vertices of necklace, h means that the necklace has 2h+2 vertices in the Nh). Through setting up a corresponding relation between the set of vertices and edges and the set of color, the corresponding chromatic numbers of the adjacent vertex-distinguishing total coloring, the adjacent vertex-distinguishing vertex edge total coloring, and the incidence adjacent vertex-distinguishing total coloring are obtained, the chromatic numbers for a necklace are five, three, and four, respectively. At the same time, the corresponding coloring schemes are given.
文章导航

/