Global and China-based regional near-surface distributions of CO2 concentrations based on GOSAT L4B data

  • WANG Shupeng ,
  • ZHANG Xingying ,
  • WANG Weihe ,
  • FANG Li
  • 1. National Satellite Meteorological Center, China Meteorological Administration, Beijing 100081, China;
    2. Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China

Received date: 2015-06-18

  Revised date: 2015-07-14

  Online published: 2015-09-12


CO2 is the most important greenhouse gas and the main cause of the global warming. In this paper, GOSAT L4B data sets of CO2 concentrations near the ground are used for the analysis of the global and regional distributions of CO2. It is found that the ground CO2 concentration is significantly higher in the Northern Hemisphere than in the southern hemisphere. The yearly CO2 concentration growth rate is about 2 ppm. The global high-value areas are in places of large populations and developed economics in East Asia, Russia, Europe and the United States. In the Northern Hemisphere seasonal distributions of CO2 concentrations near the ground, the highest CO2 concentration appears in winter and the lowest in summer. CO2 concentration near ground in China has significantly high values in North China and the Yangtze River Delta region, with obvious seasonal variations, with the highest monthly average value of 396.5 ppm in April and the minimum value of 382.8 ppm in July.

Cite this article

WANG Shupeng , ZHANG Xingying , WANG Weihe , FANG Li . Global and China-based regional near-surface distributions of CO2 concentrations based on GOSAT L4B data[J]. Science & Technology Review, 2015 , 33(17) : 63 -68 . DOI: 10.3981/j.issn.1000-7857.2015.17.006


[1] Solomon S, Qin D, Manning M, et al. Climate change 2007:The physical science basis, contribution of working group 1 to the fourth assessment report of the Intergovernmental Panel on Climate Change[M]. Cambridge:Cambridge University Press, 2007.
[2] Frankenberg C, Meirink J F, van Weele M, et al. Assessing methane emissions from global space-borne observations[J]. Science, 2005, 308 (5724):1010-1014.
[3] Rayner P J, O'Brien D M. The utility of remotely sensed CO2 concentration data in surface source inversions[J]. Geophysical Research Letters, 2001, 28(1):175-178.
[4] Alkhaled A, Michalak A M, Kawa S R, et al. A global evaluation of the regional spatial variability of column integrated CO2 distributions[J]. Journal of Geophysical Research, 2008, 113(D20):D20303.
[5] Maddy E S, Barnet C D, Goldberg M, et al. CO2 retrievals from the atmospheric infrared sounder. Methodology and validation[J]. Journal of Geophysical Research:Atmospheres, 2008, 113(D11):D11301.
[6] Beer R, Glavich T A, Rider D M. Tropospheric emission spectrometer for the earth observing system's aura satellite[J]. Applied Optics, 2001, 40 (15):2356-2367.
[7] Crevoisier C, Chédin A, Matsueda H, et al. First year of upper tropospheric integrated content of CO2 from IASI hyperspectral infrared observations[J]. Atmospheric Chemistry and Physics, 2009, 9(14):4797-4810.
[8] Boland S, Bösch H, Brown L, et al. The need for atmospheric carbon dioxide measurements from space:Contributions from a rapid reflight of the orbiting carbon observatory[R]. Pasadena, CA:OCO Science Team, NASA Jet Propulsion Labaratory, 2009.
[9] Schneising O, Buchwitz M, Bovensmann H, et al. Three years of SCIAMACHY carbon dioxide and methane column-averaged dry air mole fractionmeasurements[C].EnvisatSymposium2007,Montreux,Switzerland, 23-27 April, 2007.
[10] Yokota T, Yoshida Y, Eguchi N, et al. Global concentrations of CO2 and CH4 retrieved from GOSAT:First preliminary results[J]. Sola, 2009, 5:160-163.
[11] Reuter M, Bovensmann H, Buchwitz M, et al. Retrieval of atmospheric CO2 with enhanced accuracy and precision from SCIAMACHY:Validation with FTS measurements and comparison with model results[J]. Journal of Geophysical Research:Atmospheres, 2011, 116(4):1-13.
[12] 刘毅, 吕达仁, 陈洪滨, 等. 卫星遥感大气CO2的技术与方法进展综述[J]. 遥感技术与应用, 2011, 26(2):247-254. Liu Yi, Lü Daren, Chen Hongbin, et al. Advances in technologies and methods for satellite remote sensing of atmospheric CO2[J]. Remote Sensing Technolygy and Application, 2011, 26(2):247-254.
[13] 施海亮, 熊伟, 罗海燕, 等. 新型超光谱大气CO2遥感探测技术[J]. 光 电工程, 2013, 40(8):36-41. Shi Hailiang, Xiong Wei, Luo Haiyan, et al. Novel hyper-sp:Ectral technology for atmospheric carbon dioxide detection[J]. Opto-Electronic Engineering, 2013, 40(8):36-41.
[14] 赵静, 崔伟宏. 中国区域近地面CO2 时空分布特征研究[J]. 地球信息 科学学报, 2014, 16(2):207-213. Zhao Jing, Cui Weihong. Spatial and temporal distribution characteristics of CO2 column concentration in China from 2009 to 2010[J]. Journal of Geo-Information Science, 2014, 16(2):207-213.
[15] Andres R J, Marland G, Fung I, et al. A 1×1 distribution of carbon dioxide emissions from fossil fuel consumption and cement manufacture[J]. Global Biogeochemical Cycles, 1996, 10(3):419-429.
[16] Keppel-Aleks G, Wennberg P O, Schneider T. Sources of variations in total column carbon dioxide[J]. Atmospheric Chemistry and Physics, 2011, 11(8):3581-3593.
[17] 白文广, 张兴赢, 张鹏. 卫星遥感监测中国地区对流层二氧化碳时空 变化特征分析[J]. 科学通报, 2010, 55(30):2953-2960. Bai Wenguang, Zhang Xingying, Zhang Peng. Temporal and distribution of tropospheric CO2 over China based on satellite observation[J]. Chinese Science Bulletin, 2010, 55(30):2953-2960.
[18] 戴丽君, 崔伟宏. 2003—2010年中国对流层CO2时空分布研究[J]. 生 态环境学报, 2012, 21(7):1266-1270. Dai Lijun, Cui Weihong. Temporal and spatial distribution of tropospheric CO2 over China during 2003-2010[J]. Ecology and Environment Sciences, 2012, 21(7):1266-1270.
[19] Gerbig C, Lin J C, Wofsy S C, et al. Toward constraining regional-scale fluxes of CO2 with atmospheric observations over a continent:2. Analysis of cobra data using a receptor-oriented framework[J]. Journal of Geophysical Research, 2003, 108(D24):4757.