针对航空发动机某级静子叶片表面加工形状复杂、导致叶片变形量控制困难的现状,通过高阶拟合曲线方法建立模具和叶片毛坯的三维模型,利用ANSYS/LS-DYNA 软件对叶片的辊轧过程进行模拟。根据模拟结果在叶片截面内选取节点,研究了由轧制摩擦系数、轧制速度、轧制下压量所引起的叶片型面在法向和横向的变形情况,得出了辊轧过程中叶片在不同参数下叶片型面变形的影响规律。研究表明:叶片最大变形区域在叶盆弧面斜率较大位置处,此区域叶片表面的曲率变化较大,应变所产生的误差也最大;变形量总体上随辊轧摩擦系数的增大而增大,随轧制速度的增大而减小,随轧制下压量的增大而增大。研究结果可为航空发动机某级静子叶片加工工艺的方案设计提供理论参考。
For a certain grade of the aviation engine stator blade surface machining, complex shapes may cause a difficult situation of blade deformation control. Through the high-order curve fitting method, the three-dimensional model of blank moleds and blades are established, and ANSYS/LS-DYNA software is used to simulate the blade rolling process. According to the results of the simulation of the blade cross section, nodes are select to study the blade surface's normal and lateral deformations caused by the rolling friction coefficient, the rolling speed, the rolling amount of pressure. Different parameters influencing the deformation of blade surface and the laws of the rolling process are obtained. The results show that the maximum deformation area of the blade is in the dorsal arc position of the steep slope, where the blade surface curvature is large. The error is also generated by the maximum strain. The deformation amount of the blade increases with the rolling friction coefficient decreasing, reduces with the rolling speed increasing, and increases with the rolling amount of pressure increasing. The results can provide a theoretical reference for a certain grade aircraft engine stator blade processing design.
[1] 盛文娟. 钛合金叶片型面电解加工工艺研究[J]. 金属加工(冷加工), 2011(17): 54-57. Sheng Wenjuan. Study on the electrolysis processing technology of titanium alloy blade surface[J]. Metal Processing, 2011(17): 54-57.
[2] 钟杰, 胡楚江, 郭成. 叶片精密锻造技术的发展现状及其展望[J]. 锻 压技术, 2008(1): 1-5. Zhong Jie, Hu Chujiang, Guo Cheng. The technology development status and outlook of blade precision forging[J]. Forging & Stamping Technology, 2008(1): 1-5.
[3] 吴海龙. 航空发动机精锻叶片数控砂带磨削工艺基础研究[D]. 重庆: 重庆大学, 2012. Wu Hailong. Basic research on the CNC belt grinding process of aeroengine precision forging blades[D]. Chongqing: Chongqing University, 2012.
[4] 詹梅. 航空叶片的精锻工艺与模拟技术[J]. 重型机械, 1999(6): 1-8. Zhan Mei. Aviation blade precision forging craft and simulation techniques[J]. Heavy Machinery, 1999(6): 1-8.
[5] 王乐安. 航空工业中的锻压技术及其发展[J]. 锻压技术, 1994(1): 57- 61. Wang Le'an. Proposals concerning the technology reform of forging process and its equipments for jet engine blades[J]. Forging & Stamping Technology, 1994(1): 57-61.
[6] 于建民, 张治民, 李国俊. 叶片辊轧工艺数值模拟研究[J]. 弹箭与制 导学报,2006, 26(1): 833-835. Yu Jianmin, Zhang Zhimin, Li Guojun. Study on numerical simulation of the leaf roll process[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2006, 26(1): 833-835.
[7] 鲁玉峰, 吴蓉昆. 航空叶片精密电解加工数字化集成系统[C]//第十届 全国特种加工学术会议论文集. 北京: 中国机械工程学会特种加工分 会, 2003: 120-122. Lu Yufeng, Wu Rongkun. Aviation precision blades digital integrated electrochemical machining system[C]//Proceedings of the Tenth National Conference of Special Processing. Beijing: Special Processing Branch of the Chinese Mechanical Engineering Society, 2003: 120-122.
[8] 王延溥, 齐克敏. 金属塑性加工学[M]. 北京: 冶金工业出版社, 2001. Wang Yanpu, Qi Kemin. Metal plastic processing[M]. Beijing: Metallurgical Industry Press, 2001.
[9] 吕丽华. 轧制理论基础[M]. 重庆: 重庆大学出版社, 1991. Lü Lihua. Rolling theoretical foundation[M]. Chongqing: Chongqing University Press, 1991.
[10] 贺毓辛. 轧制工程学[M]. 北京: 化学工业出版社, 2010. He Yuxin. Rolling engineering[M]. Beijing: Chemical Industry Press, 2010.