综述文章

堆内构件用不锈钢辐照加速应力腐蚀开裂研究进展

  • 王荣山 ,
  • 徐超亮 ,
  • 黄平 ,
  • 刘向兵 ,
  • 陈明亚
展开
  • 苏州热工研究院, 苏州215004
王荣山,博士研究生,研究方向为核电站延寿与关键部件老化管理,电子信箱:cntsail@126.com

收稿日期: 2014-03-06

  修回日期: 2014-05-13

  网络出版日期: 2014-07-22

基金资助

国家高技术研究发展计划(863计划)项目(2012AA050901);苏州市科技发展计划项目(SYG201254)

Research Advances of Irradiation Assisted Stress Corrosion Cracking in Stainless Steels Used for Reactor Internals

  • WANG Rongshan ,
  • XU Chaoliang ,
  • HUANG Ping ,
  • LIU Xiangbing ,
  • CHEN Mingya
Expand
  • Suzhou Nuclear Power Research Institute, Suzhou 215004, China

Received date: 2014-03-06

  Revised date: 2014-05-13

  Online published: 2014-07-22

摘要

针对核电站堆内构件用不锈钢的辐照加速应力腐蚀开裂(IASCC)问题,分析了发生IASCC 的可能机制,论述了进行IASCC 模拟研究的方法,提出了缓解IASCC 的具体措施。辐照诱导偏析引起的晶界Cr 贫化、辐照硬化与辐照形变是发生IASCC 的可能机制;带电粒子辐照、敏化处理和多尺度模拟是反应堆堆内构件用不锈钢IASCC 研究的主要模拟方法;化学元素控制、微结构处理、应力水平控制与水化学成分控制是缓解不锈钢IASCC 的重要措施。

本文引用格式

王荣山 , 徐超亮 , 黄平 , 刘向兵 , 陈明亚 . 堆内构件用不锈钢辐照加速应力腐蚀开裂研究进展[J]. 科技导报, 2014 , 32(20) : 79 -83 . DOI: 10.3981/j.issn.1000-7857.2014.20.013

Abstract

The mechanisms, simulation methods and mitigation measures of irradiation assisted stresscorrosion cracking (IASCC) in reactor internals stainless steels are discussed. The results indicate that the irradiation induced segregation, irradiation hardening and irradiation deformation are the mechanisms of IASCC, and the irradiation by charged particles, sensitized treatment and multi-scale simulation are the basic research methods. Based on the investigations of IASCC, the concentration control of chemical elements, microstructure changes, stress level control and water chemistry treatment are the main methods to mitigate IASCC.

参考文献

[1] 刘建章. 核结构材料[M]. 北京: 化学工业出版社, 2007: 199-120. Liu Jianzhang. Nuclear structural materials[M]. Beijing: Chemical Industry Press, 2007: 199-120.
[2] Gérard R, Somville F. Situation of the baffle-former bolts in Belgian units[C]. 17th International Conference on Nuclear Engineering, Brussels, Belgium, July 12-16, 2009.
[3] IAEA. Assessment and Management of Ageing of Major Nuclear Power Plant Components Important to Safety: PWR Vessel Internals[R]. Vienna: IAEA, 2007.
[4] 杨武. 辐照促进应力腐蚀破裂研究的进展[J]. 材料保护, 1994(2): 1-4. Yang Wu. The progress of irradiation assisted stress corrosion cracking study[J]. Material Protection, 1994(2): 1-4.
[5] Wiedersich H, Okamoto P R, Lam N Q. A theory of radiation-induced segregation in concentrated alloys[J]. Journal of Nuclear Materials. 1979, 83(1): 98-108.
[6] Pathania. Analytical Transmission Electron Microscopy (ATEM) characterization of stress-corrosion cracks in LWR-irradiated austenitic stainless steel core components[R]. California: EPRI, 2003.
[7] Was G S. Fundamentals of radiation materials science: Metals and alloys[M]. Berlin: Springer, 2007: 805-809.
[8] Chung H M, Ruther W E, Sanecki J E, et al. Irradiation-assisted stress corrosion cracking of austenitic stainless steels: recent progress and new approaches[J]. Journal of Nuclear Materials, 1996, 239: 61-79.
[9] Shoji T, Suzuki S, Raja K S. Current status and future of IASCC research[J]. Journal of Nuclear Materials, 1998, 258-263: 241-251.
[10] Nakahigashi S, Kodama M, Fukuya K, et al. Effects of neutron irradiation on corrosion and segregation behavior in austenitic stainless steels[J]. Journal of Nuclear Materials, 1991, 179-181: 1061-1064.
[11] McNeil M B. Irradiation assisted stress corrosion cracking[J]. Nuclear Engineering and Design, 1998, 181(1-3): 55-60.
[12] Busby J T, Was G S, Kenik E A. Isolating the effect of radiationinduced segregation in irradiation-assisted stress corrosion cracking of austenitic stainless steels[J]. Journal of Nuclear Materials, 2002, 302 (1): 20-40.
[13] Fukuya K, Fujii K, Nishioka H, et al. A prediction model of IASCC initiation stress for bolts in PWR core internals[J]. Nuclear Engineering and Design, 2010, 240(3): 473-481.
[14] Fournier L, Sencer B H, Was G S, et al. The influence of oversized solute additions on radiation-induced changes and post-irradiation intergranular stress corrosion cracking behavior in high-purity 316 stainless steels[J]. Journal of Nuclear Materials, 2003, 321(2-3): 192-209.
[15] Zhou R S, West Elaine A, Jiao Z J, et al. Irradiation-assisted stress corrosion cracking of austenitic alloys in supercritical water[J]. Journal of Nuclear Materials, 2009, 395(1-3): 11-22.
[16] Kenik E A, Jones R H, Bell G E C. Irradiation-assisted stress corrosion cracking[J]. Journal of Nuclear Materials, 1994, 212-215: 52-59. 图5 起始阀值应力与中子注量关系 Fig. 5 Relationship between stress threshold and neutron fluence 82 科技导报2014,32(20) www.kjdb.org
[17] Miura T, Fujii K, Fukuya K, et al. Characterization of deformation structure in ion-irradiated stainless steels[J]. Journal of Nuclear Materials, 2009, 386-388: 210-213.
[18] 徐超亮, 王荣山, 黄平, 等. 不锈钢中子辐照加速应力腐蚀开裂的带 电粒子辐照模拟[J]. 材料导报, 2012(26): 150-153. Xu Chaoliang, Wang Rongshan, Huang Ping, et al. Charged-particles irradiation simulating neutron irradiation assisted strain corrosion cracking in stainless steel[J]. Materials Review, 2012(26): 150-153.
[19] Pathania R S, Nelson J L. The use of proton irradiation to understand IASCC in LWR cores[R]. California: EPRI, 2001.
[20] Cookson J M, Carter Jr R D, Damcott D L, et al. Irradiation assisted stress corrosion cracking of controlled purity 304L stainless steels[J]. Journal of Nuclear Materials, 1993, 202(1-2): 104-121.
[21] Kondou K, Hasegawa A, Abe K. Study on irradiation induced corrosion behavior in austenitic stainless steel using hydrogen-ion bombardment[J]. Journal of Nuclear Materials, 2004, 329-333 :652-656.
[22] Was G S, Allen T. Intercomparison of microchemical evolution under various types of particle irradiation[J]. Journal of Nuclear Materials, 1993, 205: 332-338.
[23] Lee J H, Fukuda T, Kakeshita T. Isothermal martensitic transformation in sensitized SUS304 austenitic stainless steel at cryogenic temperature[J]. Materials Transactions, 2009, 50(3): 473-478.
[24] Onchi T, Dohi K, Soneda N, et al. Mechanism of irradiation assisted stress corrosion crack initiation in thermally sensitized 304 stainless steel[J]. Journal of Nuclear Materials, 2005, 340(2-3): 219-236.
[25] 李红梅, 杨武, 吕战鹏. 304不锈钢在含硼和锂的高温水中的应力腐 蚀破裂和断口分析[J]. 中国腐蚀与防护学报. 2004(1): 16-19. Li Hongmei, Yang Wu, Lü Zhanpeng. Fractography of the stress corrosion cracking specimens of type 304 stainless steel in high temperature water containing boric and lithium ion[J]. Journal of corrosion and protection, 2004(1): 16-19.
[26] Leclercq S. Prediction of the effects of radiation for reactor pressure vessel and in-core materials using multi-scale modeling-60 years foreseen plant lifetime(PERFORM 60)[R]. France: Institute of Safety Research, 2008.
[27] Chen Y, Chopra O K, Soppet W K. Irradiation-assisted stress corrosion cracking of austenitic stainless steels and Alloy 690 from Halden Phase-II Irradiations[R]. Argonne: NRC, 2008.
[28] Ackland G. Controlling radiation damage[J]. Science, 2010, 327: 1587-1588.
[29] Bai X M, Voter A F, Hoagland R G, et al. Efficient annealing of radiation damage near grain boundaries via interstitial emission[J]. Science, 2010, 327: 1631-1634.
[30] Gertsman V Y, Bruemmer S M. Study of grain boundary character along intergranular stress corrosion crack paths in austenitic alloys[J]. Acta Mater, 2001, 49(9): 1589-1598.
[31] Kokawa H, Shimada M, Michiuchi M, et al. Arrest of weld-decay in 304 austenitic stainless steel by twin-induced grain boundary engineering[J]. Acta Mater, 2007, 55(16): 5401-5407.
[32] Ford F P. Corrosion assisted cracking of stainless and low-Alloyed steel in LWR-environment[R]. New York: EPRI, 1987.
[33] Takakura K, Nakata K, Kubo N, et al. IASCC Evaluation Method of Irradiated Cold Worked 316ss Baffle Former Bolt in PWR Primary Water[C]//Proceedings of the ASEM Pressure Vessels and Piping Conference. Prague, Czech Republic: ASTM, 2010: 1071-1080.
[34] Scott P. A review of irradiation assisted stress corrosion cracking[J]. Journal of Nuclear Materials, 1994, 211(2): 101-122.
[35] Ishigure K, Nukii T, Ono S. Analysis of water radiolysis in relation to stress corrosion cracking of stainless steel at high temperatures-Effect of water radiolysis on limiting current densities of anodic and cathodic reactions under irradiation[J]. Journal of Nuclear Materials, 2006, 350(1): 56-65.
[36] Chopra O K, Rao A S. A review of irradiation effects on LWR core internal materials-IASCC susceptibility and crack growth rates of austenitic stainless steels[J]. Journal of Nuclear Materials, 2011, 409 (3): 235-256.
[37] 杨武. 核电设备耐蚀材料及其评价技术[J]. 机械工程材料. 1994(2): 16-19. Yang Wu. Corrosion resistant materials used in nuclear power plants and their evaluation techniques[J]. Materials for Mechanical Engineering, 1994(2): 16-19
[38] 李红梅, 杨武, 吕战鹏. 奥氏体不锈钢辐照促进应力腐蚀破裂的模拟 研究[J]. 腐蚀与防护, 2000(12): 542-545. Li Hongmei, Yang Wu, Lü Zhanpeng. Simulation research on irradiation assisted stress corrosion cracking of austenitic stainless steel[J]. Corrosion & Protection, 2000(12): 542-545.
[39] 段远刚, 许斌, 唐传宝. 围板连接螺栓的辐照促进应力腐蚀裂纹研究[J]. 核动力工程, 2007(2): 62-65. Duan Yuangang, Xu Bin, Tang Chuanbao. Study on irradiationassisted stress corrosion cracking of baffle-former bolts[J]. Nuclear Power Engineering, 2007(2): 62-65.
[40] Glass R S, Van Konynenburg R A, Overturf G E. Corrosion processes of austenitic stainless steels and copper-based materials in gammairradiated aqueous environments[C]. Corrosion 86 NACE, Houston, TX, Mar 17-21, 1986.
[41] Stellwag B, Staudt U. Water chemistry practice at German BWR plants[J]. Powerplant Chemistry, 2005, 7(2): 95-106.
[42] 乔建生, 钟巍华, 杨文. 国产A508——3钢的小冲杆试验研究及问题 探讨[J]. 华北电力大学学报, 2011(3): 106-112. Qiao Jiansheng, Zhong Weihua, Yang Wen. Small punch test of the domestic A508-3 steel and issue argumentation[J]. Journal of Noah China Electric Power University, 2011(3): 106-112.
文章导航

/