[1] Bittner J J. Some possible effects of nursing on the mammary gland tumor incidence in mice[J]. Science, 1936, 84:162-169.
[2] Korteweg R. Genetically determined differences in hormone production a possible factor influencing the susceptibility to mammary cancer in mice[J]. British Journal of Cancer, 1948(2):91-94.
[3] Lyons M J, Moore D H. Purification of the mouse mammary tumour virus[J]. Nature, 1962, 194:1141-1142.
[4] Nusse R, Varmus H E. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome[J]. Cell, 1982, 31:99-109.
[5] Clevers H, Nusse R. Wnt/beta-catenin signaling and disease[J]. Cell, 2012, 149:1192-1205.
[6] Eastman Q, Grosschedl R. Regulation of LEF-1/TCF transcription factors by Wnt and other signals[J]. Current Opinion in Cell Biology, 1999, 11:233-240.
[7] Schambony A, Kunz M, Gradl D. Cross-regulation of Wnt signaling and cell adhesion[J]. Differentiation, 2004, 72(7):307-318.
[8] Kuhl M, Sheldahl L C, Malbon C C, et al. Ca(2+)/calmodulin-dependent protein kinase Ⅱ is stimulated by Wnt and Frizzled homologs and promotes ventral cell fates in Xenopus[J]. Journal of Biological Chemistry, 2000, 275:12701-12711.
[9] Minami Y, Oishi I, Endo M, et al. Ror-family receptor tyrosine kinases in noncanonical Wnt signaling:Their implications in developmental morphogenesis and human diseases[J]. Developmental Dynamics, 2010, 239:1-15.
[10] Veltmaat J M, Van Veelen W, Thiery J P, et al. Identification of the mammary line in mouse by Wnt10b expression[J]. Developmental Dynamics, 2004, 229:349-356.
[11] Gu B, Sun P, Yuan Y, et al. Pygo2 expands mammary progenitor cells by facilitating histone H3 K4 methylation[J]. Journal of Cell Biology, 2009, 185:811-826.
[12] Lindvall C, Evans N C, Zylstra C R, et al. The Wnt signaling receptor Lrp5 is required for mammary ductal stem cell activity and Wnt1-induced tumorigenesis[J]. Journal of Biological Chemistry, 2006, 281:35081-35087.
[13] Lindvall C, Zylstra C R, Evans N, et al. The Wnt co-receptor Lrp6 is required for normal mouse mammary gland development[J]. PloS One, 2009, 4:e5813.
[14] van Genderen C, Okamura R M, Farinas I, et al. Development of several organs that require inductive epithelial-mesenchymal interactions is impaired in LEF-1-deficient mice[J]. Genes & Development, 1994, 8:2691-2703.
[15] Macias H, Hinck L. Mammary gland development. Wiley interdisciplinary reviews[J]. Developmental Biology, 2012, 1:533-557.
[16] Buhler T A, Dale T C, Kieback C, et al. Localization and quantification of Wnt-2 gene expression in mouse mammary development[J]. Developmental Biology, 1993, 155:87-96.
[17] Cai C, Yu Q C, Jiang W, et al. R-spondin1 is a novel hormone mediator for mammary stem cell self-renewal[J]. Genes & Development, 2014, 28:2205-2218.
[18] Visvader J E. Keeping abreast of the mammary epithelial hierarchy and breast tumorigenesis[J]. Genes & Development, 2009, 23:2563-2577.
[19] Deome K B, Faulkin L J, Jr, Bern H A, et al. Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice[J]. Cancer Research, 1959, 19:515-520.
[20] Stingl J, Eirew P, Ricketson I, et al. Purification and unique properties of mammary epithelial stem cells[J]. Nature, 2006, 439:993-997.
[21] Eirew P, Stingl J, Raouf A, et al. A method for quantifying normal human mammary epithelial stem cells with in vivo regenerative ability[J]. Nature Medicine, 2008, 14:1384-1389.
[22] Lim E, Vaillant F, Wu D, et al. Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers[J]. Nature Medicine, 2009, 15:907-913.
[23] Wang D, Cai C, Dong X, et al. Identification of multipotent mammary stem cells by protein C receptor expression[J]. Nature, 2015, 517:81-84.
[24] Zeng Y A, Nusse R. Wnt proteins are self-renewal factors for mammary stem cells and promote their long-term expansion in culture[J]. Cell Stem Cell, 2010, 6:568-577.
[25] Roarty K, Shore A N, Creighton C J, et al. Ror2 regulates branching, differentiation, and actin-cytoskeletal dynamics within the mammary epithelium[J]. Journal of Cell Biology, 2015, 208:351-366.
[26] van Amerongen R, Bowman A N, Nusse R. Developmental stage and time dictate the fate of Wnt/beta-catenin-responsive stem cells in the mammary gland[J]. Cell Stem Cell, 2012, 11:387-400.
[27] Li L, Clevers H. Coexistence of quiescent and active adult stem cells in mammals[J]. Science, 2010, 327:542-545.
[28] Srinivasan K, Strickland P, Valdes A, et al. Netrin-1/neogenin interaction stabilizes multipotent progenitor cap cells during mammary gland morphogenesis[J]. Developmental Cell, 2003, 4:371-382.
[29] Williams J M, Daniel C W. Mammary ductal elongation:Differentiation of myoepithelium and basal lamina during branching morphogenesis[J]. Developmental Biology, 1983, 97:274-290.
[30] Zeng L, Cai C, Li S, et al. Essential roles of cyclin Y-like 1 and cyclin Y in dividing Wnt-responsive mammary stem/progenitor cells[J]. PLoS Genetics, 2016, 12:e1006055.
[31] Davidson G, Shen J, Huang Y L, et al. Cell cycle control of wnt receptor activation[J]. Developmental Cell, 2009, 17:788-799.
[32] Jiang M, Gao Y, Yang T, et al. Cyclin Y, a novel membrane-associated cyclin, interacts with PFTK1[J]. FEBS Letters, 2009, 583:2171-2178.
[33] Macias H, Moran A, Samara Y, et al. SLIT/ROBO1 signaling suppresses mammary branching morphogenesis by limiting basal cell number[J]. Developmental Cell, 2011, 20:827-840.
[34] Strickland P, Shin G C, Plump A, et al. Slit2 and netrin 1 act synergistically as adhesive cues to generate tubular bi-layers during ductal morphogenesis[J]. Development, 2006, 133:823-832.
[35] Harburg G, Compton J, Liu W, et al. SLIT/ROBO2 signaling promotes mammary stem cell senescence by inhibiting Wnt signaling[J]. Stem Cell Reports, 2014, 3:385-393.
[36] Chakrabarti R, Wei Y, Hwang J, et al. DeltaNp63 promotes stem cell activity in mammary gland development and basal-like breast cancer by enhancing Fzd7 expression and Wnt signalling[J]. Nature Cell Biology, 2014, 16:1004-1015.
[37] Gu B, Watanabe K, Sun P, et al. Chromatin effector Pygo2 mediates Wnt-notch crosstalk to suppress luminal/alveolar potential of mammary stem and basal cells[J]. Cell Stem Cell, 2013, 13:48-61.
[38] Fu N, Lindeman G J, Visvader J E. The mammary stem cell hierarchy[J]. Current Topics in Developmental Biology, 2014, 107:133-160.
[39] Visvader J E, Stingl J. Mammary stem cells and the differentiation hierarchy:Current status and perspectives[J]. Genes & Development, 2014, 28:1143-1158.
[40] Barker N, van Es J H, Kuipers J, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5[J]. Nature, 2007, 449:1003-1007.
[41] de Visser K E, Ciampricotti M, Michalak E M, et al. Developmental stage-specific contribution of LGR5(+) cells to basal and luminal epithelial lineages in the postnatal mammary gland[J]. Journal of Pathology, 2012, 228:300-309.
[42] Zhang M Z, Ferrigno O, Wang Z, et al. TGIF governs a feed-forward network that empowers Wnt signaling to drive mammary tumorigenesis[J]. Cancer Cell, 2015, 27:547-560.
[43] Prater M D, Petit V, Alasdair Russell I, et al. Mammary stem cells have myoepithelial cell properties[J]. Nature Cell Biology, 2014, 16:942-950.
[44] Rios A C, Fu N Y, Lindeman G J, et al. In situ identification of bipotent stem cells in the mammary gland[J]. Nature, 2014, 506:322-327.
[45] Van Keymeulen A, Rocha A S, Ousset M, et al. Distinct stem cells contribute to mammary gland development and maintenance[J]. Nature, 2011, 479:189-193.
[46] Lane T F, Leder P. Wnt-10b directs hypermorphic development and transformation in mammary glands of male and female mice[J]. Oncogene, 1997, 15:2133-2144.
[47] Incassati A, Chandramouli A, Eelkema R, et al. Key signaling nodes in mammary gland development and cancer:Beta-catenin[J]. Breast Cancer Research:BCR, 2010, 12:213.
[48] Lowther W, Wiley K, Smith G H, et al. A new common integration site, Int7, for the mouse mammary tumor virus in mouse mammary tumors identifies a gene whose product has furin-like and thrombospondin-like sequences[J]. Journal of Virology, 2005, 79:10093-10096.
[49] Theodorou V, Kimm M A, Boer M, et al. MMTV insertional mutagenesis identifies genes, gene families and pathways involved in mammary cancer[J]. Nature Genetics, 2007, 39:759-769.
[50] Klauzinska M, Baljinnyam B, Raafat A, et al. Rspo2/Int7 regulates invasiveness and tumorigenic properties of mammary epithelial cells[J]. Journal of Cellular Physiology, 2012, 227:1960-1971.
[51] Herschkowitz J I, Simin K, Weigman V J, et al. Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors[J]. Genome Biology, 2007, 8:R76. doi:10.1186/gb-2007-8-5-r76.
[52] Khramtsov A I, Khramtsova G F, Tretiakova M, et al. Wnt/beta-catenin pathway activation is enriched in basal-like breast cancers and predicts poor outcome[J]. The American Journal of Pathology, 2010, 176:2911-2920.
[53] Liu C C, Prior J, Piwnica-Worms D, et al. LRP6 overexpression defines a class of breast cancer subtype and is a target for therapy[J]. PNAS, 2010, 107:5136-5141.
[54] Foulkes W D, Smith I E, Reis-Filho J S. Triple-negative breast cancer[J]. New England Journal of Medicine, 2010, 363:1938-1948.
[55] Lehmann B D, Bauer J A, Chen X, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies[J]. Journal of Clinical Investigation, 2011, 121:2750-2767.
[56] Lopez-Knowles E, Zardawi S J, McNeil C M, et al. Cytoplasmic localization of beta-catenin is a marker of poor outcome in breast cancer patients[J]. Cancer Epidemiology, Biomarkers & Prevention, 2010, 19:301-309.
[57] Forget M A, Turcotte S, Beauseigle D, et al. The Wnt pathway regulator DKK1 is preferentially expressed in hormone-resistant breast tumours and in some common cancer types[J]. British Journal of Cancer, 2007, 96:646-653.
[58] Niida A, Hiroko T, Kasai M, et al. DKK1, a negative regulator of Wnt signaling, is a target of the beta-catenin/TCF pathway[J]. Oncogene, 2004, 23:8520-8526.
[59] Xu W H, Liu Z B, Yang C, et al. Expression of dickkopf-1 and beta-catenin related to the prognosis of breast cancer patients with triple negative phenotype[J]. PLoS One, 2012, 7:e37624.
[60] Furuuchi K, Tada M, Yamada H, et al. Somatic mutations of the APC gene in primary breast cancers[J]. The American Journal of Pathology, 2000, 156:1997-2005.
[61] Sorlie T, Bukholm I, Borresen-Dale A L. Truncating somatic mutation in exon 15 of the APC gene is a rare event in human breast carcinomas. Mutations in brief no. 179. Online[J]. Human Mutation, 1998, 12:215.
[62] Ozaki S, Ikeda S, Ishizaki Y, et al. Alterations and correlations of the components in the Wnt signaling pathway and its target genes in breast cancer[J]. Oncology Reports, 2005, 14:1437-1443.
[63] Prasad C P, Mirza S, Sharma G, et al. Epigenetic alterations of CDH1 and APC genes:Relationship with activation of Wnt/beta-catenin pathway in invasive ductal carcinoma of breast[J]. Life Sciences, 2008, 83:318-325.
[64] Van der Auwera I, Van Laere S J, Van den Bosch S M, et al. Aberrant methylation of the Adenomatous Polyposis Coli (APC) gene promoter is associated with the inflammatory breast cancer phenotype[J]. British Journal of Cancer, 2008, 99:1735-1742.
[65] Veeck J, Wild P J, Fuchs T, et al. Prognostic relevance of Wnt-inhibitory factor1(WIF1) and Dickkopf-3(DKK3) promoter methylation in human breast cancer[J]. BMC Cancer, 2009, 9:217.
[66] Klopocki E, Kristiansen G, Wild P J, et al. Loss of SFRP1 is associated with breast cancer progression and poor prognosis in early stage tumors[J]. International Journal of Oncology, 2004, 25:641-649.
[67] Veeck J, Geisler C, Noetzel E, et al. Epigenetic inactivation of the secreted frizzled-related protein-5(SFRP5) gene in human breast cancer is associated with unfavorable prognosis[J]. Carcinogenesis, 2008, 29:991-998.
[68] Matsuda Y, Schlange T, Oakeley E J, et al. WNT signaling enhances breast cancer cell motility and blockade of the WNT pathway by sFRP1 suppresses MDA-MB-231 xenograft growth[J]. Breast cancer research:BCR, 2009, 11:R32. doi:10.1186/bcr2317.
[69] Ai L, Tao Q, Zhong S, et al. Inactivation of Wnt inhibitory factor-1(WIF1) expression by epigenetic silencing is a common event in breast cancer[J]. Carcinogenesis, 2006, 27:1341-1348.
[70] Bjorklund P, Svedlund J, Olsson A K, et al. The internally truncated LRP5 receptor presents a therapeutic target in breast cancer[J]. PLoS One, 2009, 4:e4243.
[71] Sorlie T, Tibshirani R, Parker J, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets[J]. PNAS, 2003, 100:8418-8423.
[72] Yang L, Wu X, Wang Y, et al. FZD7 has a critical role in cell proliferation in triple negative breast cancer[J]. Oncogene, 2011, 30:4437-4446.
[73] Bafico A, Liu G, Goldin L, et al. An autocrine mechanism for constitutive Wnt pathway activation in human cancer cells[J]. Cancer Cell, 2004, 6:497-506.
[74] Schlange T, Matsuda Y, Lienhard S, et al. Autocrine WNT signaling contributes to breast cancer cell proliferation via the canonical WNT pathway and EGFR transactivation[J]. Breast cancer research:BCR, 2007, 9:R63. doi:10.1186/bcr1769.
[75] DeAlmeida V I, Miao L, Ernst J A, et al. The soluble wnt receptor Frizzled8CRD-hFc inhibits the growth of teratocarcinomas in vivo[J]. Cancer Re-search, 2007, 67:5371-5379.
[76] Nagahata T, Shimada T, Harada A, et al. Amplification, up-regulation and over-expression of DVL-1, the human counterpart of the Drosophila disheveled gene, in primary breast cancers[J]. Cancer Science, 2003, 94:515-518.
[77] Prasad C P, Gupta S D, Rath G, et al. Wnt signaling pathway in invasive ductal carcinoma of the breast:Relationship between beta-catenin, dishevelled and cyclin D1 expression[J]. Oncology, 2007, 73:112-117.
[78] Dong Y, Cao B, Zhang M, et al. Epigenetic silencing of NKD2, a major component of Wnt signaling, promotes breast cancer growth[J]. Oncotarget, 2015, 6:22126-22138.
[79] Li C, Franklin J L, Graves-Deal R, et al. Myristoylated Naked2 escorts transforming growth factor alpha to the basolateral plasma membrane of polarized epithelial cells[J]. PNAS, 2004, 101:5571-5576.
[80] Yin X, Xiang T, Li L, et al. DACT1, an antagonist to Wnt/beta-catenin signaling, suppresses tumor cell growth and is frequently silenced in breast cancer[J]. Breast Cancer Research:BCR, 2013, 15:R23. doi:10.1186/bcr3399.