专题论文

代谢性核受体与糖尿病肾病

  • 魏元怡 ,
  • 张晓燕 ,
  • 管又飞
展开
  • 大连医科大学医学科学研究院, 大连 116044
魏元怡,助理实验师,研究方向为糖尿病肾病,电子信箱:yywei83@163.com;管又飞(通信作者),教授,研究方向为糖尿病肾病,电子信箱:you-feiguan@szu.edu.cn

收稿日期: 2016-09-27

  修回日期: 2016-10-10

  网络出版日期: 2016-11-05

基金资助

国家重点基础研究发展计划(973计划)项目(2012CB517504);国家自然科学基金面上项目(81570636);深圳大学青年教师科研启动项目(201412);深圳自然科学基金项目(JCYJ20140418095735626)

Metabolic nuclear receptors and diabetic nephropathy

  • WEI Yuanyi ,
  • ZHANG Xiaoyan ,
  • GUAN Youfei
Expand
  • Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China

Received date: 2016-09-27

  Revised date: 2016-10-10

  Online published: 2016-11-05

摘要

随着中国糖尿病发病率逐年提高,糖尿病肾病已成为终末期肾病第二大原因,但其发病机制仍未阐明。代谢性核受体在调节糖脂代谢方面发挥重要作用,也发现其与肾脏功能调节有关,其激动剂可能成为治疗糖尿病肾病的新药。本文综述了3类代谢性核受体——PPARs、LXRs和FXRs对肾脏的保护作用及其机制,讨论了代谢性核受体作为糖尿病肾病潜在治疗靶点在糖尿病肾病防治中的重要意义。

本文引用格式

魏元怡 , 张晓燕 , 管又飞 . 代谢性核受体与糖尿病肾病[J]. 科技导报, 2016 , 34(20) : 45 -50 . DOI: 10.3981/j.issn.1000-7857.2016.20.007

Abstract

With the high incidence of diabetes mellitus, diabetic nephropathy becomes the second cause of the end-stage renal disease and at the same time, its underlying mechanism remains incompletely understood. The metabolic nuclear receptors play an important role in the glucose and lipid homeostasis. Increasing evidence demonstrates that these receptors are involved in the regulation of the renal function and participate in the pathogenesis of many kidney diseases. This paper reviews the role of the peroxisome proliferator-activated receptors (PPARs), the liver X receptors (LXRs) and the farnesoid X receptors (FXRs) in regulating the renal physiology and pathophysiology. We also discuss the possibility that these nuclear receptors serve as therapeutic targets for the treatment of the diabetic nephropathy.

参考文献

[1] Gnudi L, Coward R J, Long D A. Diabetic nephropathy:Perspective on novel molecular mechanisms[J]. Trends in Endocrinology and Metabolism, 2016:S1043-2760.
[2] Zhou Y, Zhang X, Guan Y. Human antigen r:A novel therapeutic target for diabetic nephropathy?[J]. Journal of Diabetes, 2015, 7(4):462-464.
[3] Robinson-Rechavi M, Escriva Garcia H, Laudet V. The nuclear receptor superfamily[J]. Journal of Cell Science, 2003, 116(4):585-586.
[4] Mukherjee R, Jow L, Noonan D, et al. Human and rat peroxisome proliferator activated receptors (PPARs) demonstrate similar tissue distribution but different responsiveness to PPAR activators[J]. Journal of Steroid Biochemistry and Molecular Biology, 1994, 51(3/4):157-166.
[5] Bookout A L, Jeong Y, Downes M, et al. Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network[J]. Cell, 2006, 126(4):789-799.
[6] Miglio G, Rosa A C, Rattazzi L, et al. The subtypes of peroxisome proliferator-activated receptors expressed by human podocytes and their role in decreasing podocyte injury[J]. British Journal of Clinical Pharmacology, 2011, 162(1):111-125.
[7] Guan Y, Zhang Y, Davis L, et al. Expression of peroxisome proliferator-activated receptors in urinary tract of rabbits and humans[J]. American Journal of Physiology, 1997, 273(6):F1013-F1022.
[8] Guan Y, Zhang Y, Schneider A, et al. Peroxisome proliferator-activated receptor-gamma activity is associated with renal microvasculature[J]. American Journal of Physiology Renal Physiology, 2001, 281(6):F1036-F1046.
[9] Park C W, Zhang Y, Zhang X, et al. PPARalpha agonist fenofibrate improves diabetic nephropathy in db/db mice[J]. Kidney International, 2006, 69(9):1511-1517.
[10] Calkin A C, Giunti S, Jandeleit-Dahm K A, et al. PPAR-alpha and-gamma agonists attenuate diabetic kidney disease in the apolipoprotein E knockout mouse[J]. Nephrology Dialysis Transplantation, 2006, 21(9):2399-2405.
[11] Chen Y J, Quilley J. Fenofibrate treatment of diabetic rats reduces nitrosative stress, renal cyclooxygenase-2 expression, and enhanced renal prostaglandin release[J]. Journal of Pharmacology and Experimental Therapeutics, 2008, 324(2):658-663.
[12] Park C W, Kim H W, Ko S H, et al. Accelerated diabetic nephropathy in mice lacking the peroxisome proliferator-activated receptor alpha[J]. Diabetes, 2006, 55(4):885-893.
[13] Nagai T, Tomizawa T, Nakajima K, et al. Effect of bezafibrate or pravastatin on serum lipid levels and albuminuria in NIDDM patients[J]. Journal of Atherosclerosis and Thrombosis, 2000, 7(2):91-96.
[14] Sacks F M. After the fenofibrate intervention and event lowering in diabetes (FIELD) study:Implications for fenofibrate[J]. Journal of the American College of Cardiology, 2008, 102(12A):34L-40L.
[15] Ruilope L, Hanefeld M, Lincoff A M, et al. Effects of the dual peroxisome proliferator-activated receptor-α/γ agonist aleglitazar on renal function in patients with stage 3 chronic kidney disease and type 2 diabetes:A Phase Ⅱb, randomized study[J]. BMC Nephrology, 2014, 15:180.
[16] Henry R R, Lincoff A M, Mudaliar S, et al. Effect of the dual peroxisome proliferator-activated receptor-alpha/gamma agonist aleglitazar on risk of cardiovascular disease in patients with type 2 diabetes (SYNCHRONY):A phase Ⅱ, randomised, dose-ranging study[J]. The Lancet, 2009, 374(9684):126-135.
[17] Kiss E, Kränzlin B, Wagenblaβ K, et al. Lipid droplet accumulation is associated with an increase in hyperglycemia-induced renal damage:Prevention by liver X receptors[J]. American Journal of Pathology, 2013, 182(3):727-741.
[18] Tanaka Y, Kume S, Araki S, et al. Fenofibrate, a PPARα agonist, has renoprotective effects in mice by enhancing renal lipolysis[J]. Kidney International, 2011, 79(8):871-882.
[19] Chen L, Zhang J, Zhang Y, et al. Improvement of inflammatory responses associated with NF-kappa B pathway in kidneys from diabetic rats[J]. Inflammation Research, 2008, 57(5):199-204.
[20] Chen L L, Zhang J Y, Wang B P. Renoprotective effects of fenofibrate in diabetic rats are achieved by suppressing kidney plasminogen activator inhibitor-1[J]. Vascular Pharmacology, 2006, 44(5):309-315.
[21] Balakumar P, Reddy J, Singh M. Do resident renal mast cells play a role in the pathogenesis of diabetic nephropathy?[J]. Molecular and Cellular Biochemistry, 2009, 330(1/2):187-192.
[22] Tomizawa A, Hattori Y, Inoue T, et al. Fenofibrate suppresses microvascular inflammation and apoptosis through adenosine monophosphate-activated protein kinase activation[J]. Metabolism, 2011, 60(4):513-522.
[23] Matsushita Y, Ogawa D, Wada J, et al. Activation of peroxisome proliferator-activated receptor delta inhibits streptozotocin-induced diabetic nephropathy through anti-inflammatory mechanisms in mice[J]. Diabetes, 2011, 60(3):960-968.
[24] Lee E Y, Kim G T, Hyun M, et al. Peroxisome proliferator-activated receptor-δ activation ameliorates albuminuria by preventing nephrin loss and restoring podocyte integrity in type 2 diabetes[J]. Nephrology Dialysis Transplantation, 2012, 27(11):4069-4079.
[25] Liang Y J, Jian J H, Liu Y C, et al. Advanced glycatin end products-induced apoptosis attenuated by PPARdelta activation and epigallocatechin gallate through NF-kappaB pathway in human embryonic kidney cells and human mesangial cells[J]. Diabetes-Metabolism Research and Reviews, 2010, 26(5):406-416.
[26] Liang Y J, Chen S A, Jian J H. Peroxisome proliferator-activated receptor delta down regulates the expression of the receptor for advanced gllycation end products and pro-inflammatory cytokines in the kidney of streptozotocin-induced diabetic mice[J]. European Journal of Pharmaceutical Sciences, 2011, 43(1/2):65-70.
[27] Ruan X, Zheng F, Guan Y. PPARs and the kidney in metabolic syndrome[J]. American Journal of Physiology Renal Physiology, 2008, 294(5):F1032-F1047.
[28] Zhang Y, Guan Y. PPAR-gamma agonists and diabetic nephropathy[J]. Current Diabetes Reports, 2005, 5(6):470-475.
[29] Guan Y, Hao C, Cha D R, et al. Thiazolidinediones expand body fluid volume through PPARgamma stimulation of ENaC-mediated renal salt absorption[J]. Nature Medicine, 2005, 11(8):81-86.
[30] Agarwal R. Anti-inflammatory effects of short-term pioglitazone therapy in men with advanced diabetic nephropathy[J]. American Journal of Physiology Renal Physiology, 2006, 290(3):F600-F605.
[31] Pistrosch F, Herbrig K, Kindel B, et al. Rosiglitazone improves glomerular hyperfiltration, renal endothelial dysfunction, and microalbuminuria of incipient diabetic nephropathy in patients[J]. Diabetes, 2005, 54(7):2206-2211.
[32] Sarafidis P A, Lasaridis A N. Actions of peroxisome proliferator-activated receptors-gamma agonists explaining a possible blood pressure-lowering effect[J]. American Journal of Hypertension, 2006, 19(6):646-653.
[33] Carmona M C, Louche K, Nibbelink M, et al. Fenofibrate prevents Rosiglitazone-induced body weight gain in ob/ob mice[J]. International Journal of Obesity (Lond), 2005, 29(7):864-871.
[34] Cha D R, Zhang X, Zhang Y, et al. Peroxisome proliferator activated receptor alpha/gamma dual agonist tesaglitazar attenuates diabetic nephropathy in db/db mice[J]. Diabetes, 2007, 56(8):2036-2045.
[35] Liao J, Soltani Z, Ebenezer P, et al. Tesaglitazar, a dual peroxisome proliferator-activated receptor agonist (PPAR alpha/gamma), improves metabolic abnormalities and reduces renal injury in obese Zucker rats[J]. Nephron Experimental Nephrology, 2010, 114(2):e61-e68.
[36] Vionnet N, Tregouët D, Kazeem G, et al. Analysis of 14 candidate genes for diabetic nephropathy on chromosome 3q in European populations:Strongest evidence for association with a variant in the promoter region of the adiponectin gene[J]. Diabetes, 2006, 55(11):3166-3174.
[37] Sharma K, Ramachandrarao S, Qiu G, et al. Adiponectin regulates albuminuria and podocyte function in mice[J]. Journal of Clinical Investigation, 2008, 118(5):1645-1656.
[38] Hallows K R, Mount P F, Pastor-Soler N M, et al. Role of the energy sensor AMP-activated protein kinase in renal physiology and disease[J]. American Journal of Physiology Renal Physiology, 2010, 298(5):F1067-F1077.
[39] Ohga S, Shikata K, Yozai K, et al. Thiazolidinedione ameliorates renal injury in experimental diabetic rats through anti-inflammatory effects mediated by inhibition of NF-kappaB activation[J]. American Journal of Physiology Renal Physiology, 2007, 292(4):F1141-F1150.
[40] Ohtomo S, Izuhara Y, Takizawa S, et al. Thiazolidinediones provide better renoprotection than insulin in an obese, hypertensive type Ⅱ diabetic rat model[J]. Kidney International, 2007, 72(12):1512-1519.
[41] Flaquer M, Lloberas N, Franquesa M, et al. The combination of sirolimus and rosiglitazone produces a renoprotective effect on diabetic kidney disease in rats[J]. Life Sciences, 2010, 87(5/6):147-153.
[42] Tang S C, Leung J C, Chan L Y, et al. Activation of tubular epithelial cells in diabetic nephropathy and the role of the peroxisome proliferator-activated receptor-gamma agonist[J]. Journal of the American Society of Nephrology, 2006, 17(6):1633-1643.
[43] Fukami K, Ueda S, Yamagishi S, et al. AGEs activate mesangial TGF-beta-Smad signaling via an angiotensin Ⅱ type I receptor interaction[J]. Kidney International, 2004, 66(6):2137-2147.
[44] Matsui T, Yamagishi S, Takeuchi M, et al. Nifedipine inhibits advanced glycation end products (AGEs) and their receptor (RAGE) interaction-mediated proximal tubular cell injury via peroxisome proliferator-activated receptor-gamma activation[J]. Biochemical and Biophysical Research Communications, 2010, 398(2):326-330.
[45] Awazu M, Omori S, Ishikura K, et al. The lack of cyclin kinase inhibitor p27(Kip1) ameliorates progression of diabetic nephropathy[J]. Journal of the American Society of Nephrology, 2003, 14(3):699-708.
[46] Huang J S, Chuang L Y, Guh J Y, et al. Antioxidants attenuate high glucose-induced hypertrophic growth in renal tubular epithelial cells[J]. American Journal of Physiology Renal Physiology, 2007, 293(4):F1072-F1082.
[47] Okada T, Wada J, Hida K, et al. Thiazolidinediones ameliorate diabetic nephropathy via cell cycle-dependent mechanisms[J]. Diabetes, 2006, 55(6):1666-1677.
[48] Yuan Y, Zhang A, Huang S, et al. A PPARgamma agonist inhibits aldosterone-induced mesangial cell proliferation by blocking ROS-dependent EGFR intracellular signaling[J]. American Journal of Physiology Renal Physiology, 2011, 300(2):F393-F402.
[49] Li X, Liu W, Wang Q, et al. Emodin suppresses cell proliferation and fibronectin expression via p38MAPK pathway in rat mesangial cells cultured under high glucose[J]. Molecular and Cellular Endocrinology, 2009, 307(1/2):157-162.
[50] Azab M M, Abdel-Azeez H A, Zanaty M F, et al. Peroxisome proliferator activated receptor γ2 gene Pro12Ala gene polymorphism in type 2 diabetes and its relationship with diabetic nephropathy[J]. Linical Chemistry and Laboratory Medicine, 2014, 60(5):743-749.
[51] Huang J S, Chuang C T, Liu M H, et al. Klotho attenuates high glucose-induced fibronectin and cell hypertrophy via the ERK1/2-p38 kinase signaling pathway in renal interstitial fibroblasts[J]. Molecular and Cellular Endocrinology, 2014, 390(1-2):45-53.
[52] Wójcicka G, Jamroz-Wišniewska A, Horoszewicz K, et al. Liver X receptors (LXRs). Part Ⅰ:Structure, function, regulation of activity, and role in lipid metabolism[J]. Postepy Higieny I Medycyny Doswiadczalnej (Online), 2007, 61:736-759.
[53] Bonnet F, Cooper M E. Potential influence of lipids in diabetic nephropathy:Insights from experimental data and clinical studies[J]. Diabetes Obesity & Metabolism, 2000, 26(4):254-264.
[54] Wu J, Zhang Y, Wang N, et al. Liver X receptor-alpha mediates cholesterol efflux in glomerular mesangial cells[J]. American Journal of Physiology Renal Physiology, 2004, 287(5):F886-F895.
[55] Patel M, Wang X X, Magomedova L, et al. Liver X receptors preserve renal glomerular integrity under normoglycaemia and in diabetes in mice[J]. Diabetologia, 2014, 57(2):435-446.
[56] Tachibana H, Ogawa D, Matsushita Y, et al. Activation of liver X receptor inhibits osteopontin and ameliorates diabetic nephropathy[J]. Journal of the American Society of Nephrology, 2012, 23(11):1835-1846.
[57] Robinson-Rechavi M, Escriva Garcia H, Laudet V. The nuclear receptor superfamily[J]. Journal of Cell Science, 2003, 116(4):585-586.
[58] Makishima M, Okamoto A Y, Repa J J, et al. Identification of a nuclear receptor for bile acids[J]. Science, 1999, 284(5418):1362-1365.
[59] Jiang T, Wang X X, Scherzer P, et al. Farnesoid X receptor modulates renal lipid metabolism, fibrosis, and diabetic nephropathy[J]. Diabetes, 2007, 56(10):2485-2493.
[60] Glastras S J, Wong M G, Chen H, et al. FXR expression is associated with dysregulated glucose and lipid levels in the offspring kidney induced by maternal obesity[J]. Nutrition & Metabolism (Lond), 2015, 12:40.
[61] Zhang Y, Kast-Woelbern H R, Edwards R A. Natural structural variants of the nuclear reeptor farnesoid X receptor affect transcriptional activation[J]. Journal of Biological Chemistry, 2003, 278(1):104-110.
[62] Zhang X, Huang S, Gao M, et al. Farnesoid X receptor (FXR) gene deficiency impairs urine concentration in mice[J]. PNAS, 2014, 111(6):2277-2282.
[63] Zhou B, Feng B, Qin Z, et al. Activation of farnesoid X receptor downregulates visfatin and attenuates diabetic nephrapathy[J]. Molecular and Cellular Endocrinology, 2016, 419:72-82.
文章导航

/