专题论文

水下软体机器人柔性驱动方式及其仿生运动机理研究进展

  • 傅珂杰 ,
  • 曹许诺 ,
  • 张桢 ,
  • 刘先卫 ,
  • 李国瑞 ,
  • 梁艺鸣 ,
  • 李铁风
展开
  • 浙江大学航空航天学院工程力学系, 杭州 310058
傅珂杰,硕士研究生,研究方向为软体机器人,电子信箱:3140102548@zju.edu.cn

收稿日期: 2017-06-30

  修回日期: 2017-08-15

  网络出版日期: 2017-09-25

A review of the flexible driving mode of underwater software robot and its mechanism of bionic movement

  • FU Kejie ,
  • CAO Xunuo ,
  • ZHANG Zhen ,
  • LIU Xianwei ,
  • LI Guorui ,
  • LIANG Yiming ,
  • LI Tiefeng
Expand
  • Department of Engineering Mechanics, Zhejiang University, Hangzhou 310058, China

Received date: 2017-06-30

  Revised date: 2017-08-15

  Online published: 2017-09-25

摘要

随着水下作业要求的增加以及软体机器人技术的发展,水下软体机器人的研究成为水下机器人的一个前沿方向。用人工肌肉实现驱动控制并能实现仿生运动的水下软体机器人成为相关领域的研究热点。本文介绍现有水下软体机器人中7类人工肌肉驱动方式,再根据水下软体机器人推进形式,按5种仿生运动形式介绍了现有的水下软体机器人,最后展望了水下软体机器人未来在水下勘探的应用前景。

本文引用格式

傅珂杰 , 曹许诺 , 张桢 , 刘先卫 , 李国瑞 , 梁艺鸣 , 李铁风 . 水下软体机器人柔性驱动方式及其仿生运动机理研究进展[J]. 科技导报, 2017 , 35(18) : 44 -51 . DOI: 10.3981/j.issn.1000-7857.2017.18.005

Abstract

With the increase of the underwater operation requirements and the development of the soft robot technology, the underwater soft robot becomes one of the top choices in the underwater robots. The underwater soft robots with artificial muscles to realize the drive control and the bionic motion become a research hot spot. This paper introduces underwater soft robots in seven kinds of the existing drive modes, based on the artificial muscles. The underwater soft robots can have five bionic movement forms. At the end, the future applications of underwater robots in the underwater exploration are discussed.

参考文献

[1] 李铁风, 李国瑞, 梁艺鸣, 等. 软体机器人结构机理与驱动材料研究综述[J]. 力学学报, 2016, 48(4):756-766. Li Tiefeng, Li Guorui, Liang Yiming, et al. Review of materials and structures in soft robotics[J]. Chinese Journal of Theoretical and Ap-plied Mechanics, 2016, 48(4):756-766.
[2] Wehner M, Truby R L, Fitzgerald D J, et al. An integrated design and fabrication strategy for entirely soft, autonomous robots[J]. Nature, 2016, 536(7617):451.
[3] Park S J, Gazzola M, Park K S, et al. Phototactic guidance of a tissueengineered soft-robotic ray.[J]. Science, 2016, 353(6295):158-162.
[4] Chu W S, Lee K T, Song S H, et al. Review of biomimetic underwater robots using smart actuators[J]. International Journal of Precision Engi-neering and Manufacturing, 2012, 13(7):1281-1292.
[5] Villanueva A, Smith C, Priya S. A biomimetic robotic jellyfish (Robojel-ly) actuated by shape memory alloy composite actuators[J]. Bioinspira-tion & Biomimetics, 2011, 6(3):036004.
[6] Zhu F B, Zhang C L, Qian J, et al. Mechanics of dielectric elastomers:materials, structures, and devices[J]. Journal of Zhejiang University-Sci-ence A(Applied Physics & Engineering), 2016(1):1-21.
[7] Li T, Keplinger C, Baumgartner R, et al. Giant voltage-induced defor-mation in dielectric elastomers near the verge of snap-through instabili-ty[J]. Journal of the Mechanics & Physics of Solids, 2013, 61(2):611-628.
[8] Li T, Qu S, Yang W. Electromechanical and dynamic analyses of tun-able dielectric elastomer resonator[J]. International Journal of Solids & Structures, 2012, 49(26):3754-3761.
[9] Suzumori K, Endo S, Kanda T, et al. A bending pneumatic rubber actu-ator realizing soft-bodied manta swimming robot[C]//IEEE International Conference on Robotics and Automation. New York:IEEE, 2007:4975-4980.
[10] Li H, Go G, Ko S Y, et al. Magnetic actuated pH-responsive hydrogelbased soft micro-robot for targeted drug delivery[J]. Smart Materials & Structures, 2016, 25(2):027001.
[11] Wu W, Deconinck A, Lewis J A. Omnidirectional printing of 3d micro-vascular networks[J]. Advanced Materials. 2011, 23(24):H178-H183.
[12] Kolesky D B, Truby R L, Gladman A S, et al. 3D bioprinting of vascu-larized, heterogeneous cell-laden tissue constructs.[J]. Advanced Mate-rials, 2014, 26(19):3124.
[13] Barnes H A. Thixotropy:A review[J]. Journal of Non-Newtonian Fluid Mechanics, 1997, 70(1/2):1-33.
[14] Wang Z, Hang G, Li J, et al. A micro-robot fish with embedded SMA wire actuated flexible biomimetic fin[J]. Sensors & Actuators A Physi-cal, 2008, 144(2):354-360.
[15] Marchese A D, Onal C D, Rus D. Autonomous soft robotic fish capa-ble of escape maneuvers using fluidic elastomer actuators[J]. Soft Ro-botics, 2014, 1(1):75-87.
[16] Low K H, Yang J, Pattathil A P, et al. Initial prototype design and in-vestigation of an undulating body by SMA[C]//IEEE International Con-ference on Automation Science and Engineering. New York:IEEE, 2006:472-477.
[17] Zhang S, Liu B, Wang L, et al. Design and implementation of a light-weight bioinspired pectoral fin driven by SMA[J]. IEEE/ASME Trans-actions on Mechatronics, 2014, 19(6):1773-1785.
[18] Kamamichi N, Yamakita M, Asaka K, et al. A snake-like swimming robot using IPMC actuator/sensor[C]//Proceedings of the 2006 IEEE International Conference on Robotics and Automation. Florida:IEEE, 2006:1812-1817.
[19] Li T, Li G, Liang Y, et al. Fast-moving soft electronic fish[J]. Science Advances, 2017, 3(4):e1602045.
[20] Cai Y, Bi S, Zheng L. Design and experiments of a robotic fish imitat-ing cow-nosed Ray[J]. Journal of Bionic Engineering, 2010, 7(2):120-126.
[21] Chen Z, Um T I, Bartsmith H. Ionic polymer-metal composite enabled robotic manta ray[J]. Proceedings of Spie the International Society for Optical Engineering, 2011, 7976(17):797637-797637-12.
[22] Chen Z, Um T I, Bart-Smith H. A novel fabrication of ionic polymer-metal composite membrane actuator capable of 3-dimensional kine-matic motions[J]. Sensors & Actuators A:Physical, 2011, 168(1):131-139.
[23] Wang Z, Hang G, Wang Y, et al. Embedded SMA wire actuated biomi-metic fin:a module for biomimetic underwater propulsion[J]. Smart Materials & Structures, 2008, 17(2):025039.
[24] 杜威. SMA驱动的仿乌贼喷射推进器原型研究[D]. 哈尔滨:哈尔滨工业大学, 2008. Du Wei. A prototype of squid like propeller driven by SMA[D]. Har-bin:Harbin Institute of Technology, 2008.
[25] 李健. 仿生乌贼推进器及其流体动力仿真和实验研究[D]. 哈尔滨:哈尔滨工业大学, 2011. Li Jian. Simulation and experimental investigation of biomimetic squid thruster[D]. Harbin:Harbin Institute of Technology, 2011.
[26] Fang H, Li S, Wang K W, et al. Phase coordination and phase-veloci-ty relationship in metameric robot locomotion[J]. Bioinspiration & Bio-mimetics, 2015, 10(6):06600.
[27] Fang H, Li S, Wang K W, et al. A comprehensive study on the loco-motion characteristics of a metameric earthworm-like robot[J]. Multi-body System Dynamics, 2015, 35(2):1-23.
文章导航

/