研究论文

工业机器人结构与控制耦合的集成设计方法

  • 白克强 ,
  • 刘知贵 ,
  • 王营通
展开
  • 1. 西南科技大学信息工程学院, 绵阳 621010;
    2. 西南科技大学城市学院, 绵阳 621000
白克强,博士,研究方向为机器人、计算机应用技术及数学建模,电子信箱:baikeqiang@swust.edu.cn

收稿日期: 2017-10-09

  修回日期: 2018-04-16

  网络出版日期: 2018-05-19

基金资助

四川省科技厅科技支撑项目(2015FZ0091);西南科技大学博士研究基金项目(17ZX7157)

An integrated design method coupling structure and control for industrial robot

  • BAI Keqiang ,
  • LIU Zhigui ,
  • WANG Yingtong
Expand
  • 1. Information Engineering College, Southwest University of Science and Technology, Mianyang 621010, China;
    2. City College, Southwest University of Science and Technology, Mianyang 621000, China

Received date: 2017-10-09

  Revised date: 2018-04-16

  Online published: 2018-05-19

摘要

针对工业机器人伺服系统结构和控制分离设计误差较大的问题,提出一种基于结构-控制耦合的集成设计方法。以结构重量、跟踪精度和控制能量指标为目标函数,以稳定和快速跟踪性能指标为约束,同时考虑结构与控制的耦合,采用分步迭代策略消减误差,以实现工业机器人工作在最佳状态的目标。以两关节机器人设计为例进行MTALAB仿真实验,结果表明,应用基于结构-控制耦合的集成方法设计,伺服系统具有较好的鲁棒性,在时间调整、超调量消除、阶跃动态响应能力等方面均优于分离设计,使机器人的综合性能达到最优。

本文引用格式

白克强 , 刘知贵 , 王营通 . 工业机器人结构与控制耦合的集成设计方法[J]. 科技导报, 2018 , 36(9) : 91 -96 . DOI: 10.3981/j.issn.1000-7857.2018.09.012

Abstract

Focused on the large error of separation design for industrial robot servo system structure and control, a new integrated design method for coupling structure and control is proposed. The method takes the structural weight, tracking precision and control energy as the target function, takes stable and fast tracking performance as the constraint, and considers the coupling problem of structure and control by using a step iterative strategy so as to achieve the goal of the industrial robot working in the best state. The integrated design method is evaluated via MTALAB on a two joint robot. Simulation results show that the proposed method can make the industrial robot have good robustness, and that the adjustment of the length of time, overshoot elimination and step response are all superior to those by separation design, the robot system being working in optimal performance.

参考文献

[1] Toumi K Y. Modeling, design and control integration:A necessary step in mechatronics[J]. IEEE/ASME Transactionson Mechatronics, 1996, 1(1):29-37.
[2] 李素兰, 黄进, 段宝岩. 一种雷达天线伺服系统结构与控制的集成设计研究[J]. 机械工程学报, 2010, 46(19):140-145. Li Sulan, Huang Jin, Duan Baoyan. Integrated design of structure and control for radar antenna servo-mechanism[J]. Journal of Mechanical Engineering, 2010, 46(19):140-145.
[3] Tripathi S M, Tiwari A N, Singh D. Optimum design of proportional-integral controllers in grid-integrated PMSG-based wind energy conversion system[J]. International Transactions on Electrical Energy Systems, 2016, 26(5):1006-1031.
[4] Chen Q, Chen W, Yang G, et al. An integrated two-level selfcalibration method for a cable-driven humanoid Arm[J]. IEEE Transactions on Automation Science & Engineering, 2013, 10(2):380-391.
[5] Xiong D, Xiao J, Lu H, et al. The design of an intelligent soccer-playing robot[J]. Industrial Robot, 2016, 43(1):91-102.
[6] Iqbal U, Samad A, Nissa Z, et al. Embedded control system for autarep-a novel autonomous articulated robotic educational platform[J]. Tehnicki Vjesnik, 2014, 21(6):1255-1261.
[7] Manzoor S, Islam R U, Khalid A, et al. An open-source multiDOF articulated robotic educational platform for autonomous object manipulation[J]. Robotics and Computer-Integrated Manufacturing, 2014, 30(3):351-362.
[8] Chen C L, Wu T C, Peng C C. Robust trajectories following control of a 2-link robot manipulator via coordinate transformation for manufacturing applications[J]. Robotics and ComputerIntegrated Manufacturing, 2011, 27(3):569-580.
[9] Yang C, Wang X, Cheng L, et al. Neural-learning-based telerobot control with guaranteed performance[J]. IEEE Transactions on Cybernetics, 2016, 47(10):3148-3159.
[10] Habib T, Komoto H. Comparative analysis of design concepts of mechatronics systems with a CAD tool for system architecting[J]. Mechatronics, 2014, 24(7):788-804.
[11] Bai K Q, Luo M Z, Li T, et al. Active vibration adaptive fuzzy backstepping control of a 7-DOF dual-arm of humanoid robot with input saturation[J]. Journal of Intelligent & Fuzzy Systems, 2016, 31(6):2949-2957.
[12] Bai K Q, Luo M Z, Jiang G W, et al. Research of the torque compensation method for the vibration suppression of the industrial robot[C]. Proceedings of the 2015 IEEE Conference on Robotics and Biomimetics, 2015:2575-2579.
[13] Zhao J, Zhao T, Xi N, et al. MSU tailbot:Controlling aerial maneuver of a miniature-tailed jumping robot[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(6):2903-2914.
[14] Baisch A T, Ozcan O, Goldberg B, et al. High speed locomotion for a quadrupedal microrobot[J]. International Journal of Robotics Research, 2014, 33(8):1063-1082.
[15] Xia M, Li T, Zhang Y, et al. Closed-loop design evolution of engineering system using condition monitoring through internet of things and cloud computing[J]. Computer Networks the International Journal of Computer & Telecommunications Networking, 2016, 101:5-18.
[16] John J Craig. 机器人学导论[M]. 贠超, 译. 北京:机械工业出版社, 2006. John J Craig. Introduction to robotics mechanics and control[M]. Yun chao, trans. Beijing:China Machine Press, 2006.
文章导航

/