专题:古生物学进展

1.3亿年前早期鸟类化石揭示尾骨与扇状尾羽独立演化

  • 王敏
展开
  • 1. 中国科学院古脊椎动物与古人类研究所, 北京 100044;
    2. 中国科学院南京地质古生物研究所, 南京 210008
周忠和,研究员,研究方向为古鸟类,电子信箱:zhouzhonghe@ivpp.ac.cn

收稿日期: 2018-05-06

  修回日期: 2018-08-23

  网络出版日期: 2018-12-18

A 130 million-year-old fossil bird indicates decoupled evolution of pygostyle and tail fanning

  • WANG Min
Expand
  • 1. Institute of Vertebrate Paleontology and Paleooanthropology, Chinese Academy of Sciences, Beijing 100044, China;
    2. Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nangjing 210008, China

Received date: 2018-05-06

  Revised date: 2018-08-23

  Online published: 2018-12-18

摘要

在恐龙向鸟类演化的过程中,尾骨变化最为显著,由于缺少过渡环节的化石,这一演化过程并不清楚。现代鸟类的尾骨缩短并愈合成犁状尾综骨,其上附有扇状尾羽而构成飞行器官的重要组成部分。学术界普遍认为犁状尾综骨和扇状尾羽是同步演化的。中国科学院古脊椎动物与古人类研究所王敏等报道了在河北白垩纪地层中发现的1.3亿年前的反鸟类化石,显示其具有与现代鸟类相似的犁状尾综骨,但却并不具有扇状尾羽。本研究组综合形态学、骨组织学和扫描电镜等方法,提出"犁状尾综骨与扇状尾羽在早期鸟类中相互独立"的假设,挑战了此前长期占主流的学术观点。相较于犁状尾综骨在今鸟型类的广泛发育,这一结构在部分反鸟类中的出现则是平行演化的结果,结合越来越多的其他化石证据,表明在鸟类演化早期,平行演化是一个非常普遍的现象,这也为依据骨骼形态讨论中生代鸟类的系统发育关系提出了挑战。

本文引用格式

王敏 . 1.3亿年前早期鸟类化石揭示尾骨与扇状尾羽独立演化[J]. 科技导报, 2018 , 36(23) : 26 -29 . DOI: 10.3981/j.issn.1000-7857.2018.23.004

Abstract

During the dinosaurs-birds transition, the most conspicuous morphological change is the abbreviation of the long bony tail. Due to the lack of transitional fossils, little is known about how that modification took place. In living birds, the tail ends in a compound ploughshaped element termed pygostyle that attaches the fan-shaped tail feathers, forming an indispensable flight apparatus. Based on comparative anatomical, histological and electrical scanning analyses, Wang et. al. suggested that the plough-shaped pygostyle and the tail fanning is evolutionally decoupled in the early avian history, which challenges the long-standing theory that these two features are coevolved. A plough-shaped pygostyle is distributed widely in Ornithuromorpha. Therefore, the rare occurrence of this structure in some enantiornithines is the result of convergence, as confirmed by a few other fossil birds, further highlighting that the early avian evolution is characterized by parallelism.

参考文献

[1] Xu X, Zhou Z, Dudley R, et al. An integrative approach to understanding bird origins[J]. Science, 2014, 346(6215):1253293.]2] Wang M, Zhou Z H. The evolution of birds withimplications from new fossil evidences[M]//Maina J H. The Biology of the Avian Respiratory System. Heidelberg:Springer International Publishing AG, 2017:1-26.
[3] Gill F B. Ornithology[M]. New York:W. H. Freeman, 2007.
[4] Gatesy S M, Dial K P. From frond to fan:Archaeopteryx and the evolution of short-tailed birds[J]. Evolution, 1996, 50(5):2037-2048.
[5] Baumel J J. Functional morphology of the tail apparatus of the pigeon (Columba livia)[J]. Advances in Anatomy, Embryology, and Cell Biology, 1988, 110:1-115.
[6] Clarke J A, Zhou Z, Zhang F. Insight into the evolution of avian flight from a new clade of Early Cretaceous ornithurines from China and the morphology of Yixianornis grabaui[J]. Journal of Anatamy, 2006, 208(3):287-308.
[7] Wang M, O'Connor J K, Pan Y et al. A bizarre Early Cretaceous enantiornithine bird with unique crural feathers and an ornithuromorph plough-shaped pygostyle[J]. Nature Communications, 2017, 8:14141.
[8] He H Y, Wang X L, Jin F et al. The 40Ar/39Ar dating of the early Jehol Biota from Fengning, Hebei Province, northern China[J]. Geochemistry, Geophysics, Geosystems, 2016, 7(4):Q04001.
[9] Vinther J. A guide to the field of palaeo colour[J]. Bioessays, 2015, 37(6):643-656.
[10] Zheng X, Wang X L, O'Connor J K et al. Insight into the early evolution of the avian sternum from juvenile enantiornithines[J]. Nature Communications, 2012(3):1116.
[11] Wang M, Li Z H, Zhou Z H. Insight into the growth pattern and bone fusion of basal birds from an Early Cretaceous enantiornithine bird[J]. PNAS, 2017, 114(1):1470-1475.
文章导航

/